ERGODICITY OF AFFINE PROCESSES ON THE CONE OF SYMMETRIC POSITIVE SEMIDEFINITE MATRICES

被引:2
|
作者
Friesen, Martin [1 ]
Jin, Peng [2 ]
Kremer, Jonas [1 ]
Ruediger, Barbara [1 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, D-42119 Wuppertal, Germany
[2] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
关键词
Affine process; invariant distribution; limit distribution; ergodicity; STOCHASTIC DIFFERENTIAL-EQUATION; STATE BRANCHING-PROCESSES; MOMENT EXPLOSIONS; LIMIT DISTRIBUTIONS; VOLATILITY; YIELD; JUMPS; MODEL;
D O I
10.1017/apr.2020.21
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article investigates the long-time behavior of conservative affine processes on the cone of symmetric positive semidefinite d x d matrices. In particular, for conservative and subcritical affine processes we show that a finite log-moment of the state-independent jump measure is sufficient for the existence of a unique limit distribution. Moreover, we study the convergence rate of the underlying transition kernel to the limit distribution: first, in a specific metric induced by the Laplace transform, and second, in the Wasserstein distance under a first moment assumption imposed on the state-independent jump measure and an additional condition on the diffusion parameter.
引用
收藏
页码:825 / 854
页数:30
相关论文
共 50 条
  • [1] AFFINE PROCESSES ON POSITIVE SEMIDEFINITE MATRICES
    Cuchiero, Christa
    Filipovic, Damir
    Mayerhofer, Eberhard
    Teichmann, Josef
    [J]. ANNALS OF APPLIED PROBABILITY, 2011, 21 (02): : 397 - 463
  • [2] ON THE CONE OF POSITIVE SEMIDEFINITE MATRICES
    HILL, RD
    WATERS, SR
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 : 81 - 88
  • [3] Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone
    Auslender, A
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2003, 18 (04): : 359 - 376
  • [4] On cone of nonsymmetric positive semidefinite matrices
    Wang, Yingnan
    Xiu, Naihua
    Han, Jiye
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (04) : 718 - 736
  • [5] Faces of the cone of positive semidefinite matrices
    Wang, Jie
    Si, Lin
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (03): : 313 - 321
  • [6] Proximal point algorithm with Schur decomposition on the cone of symmetric semidefinite positive matrices
    Gregorio, Ronaldo
    Oliveira, Paulo Roberto
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (02) : 469 - 478
  • [7] Transform formulae for linear functionals of affine processes and their bridges on positive semidefinite matrices
    Kang, Chulmin
    Kang, Wanmo
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (06) : 2419 - 2445
  • [8] CONJUGATE CONE CHARACTERIZATION OF POSITIVE DEFINITE AND SEMIDEFINITE MATRICES
    HAN, SP
    MANGASARIAN, OL
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 56 (JAN) : 89 - 103
  • [9] ON SOME RELATIONS BETWEEN THE CONE OF POSITIVE SEMIDEFINITE MATRICES AND THE MOMENT CONE
    Wang, Jie
    Si, Lin
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 21 (01): : 111 - 118
  • [10] A Remark on the Rank of Positive Semidefinite Matrices Subject to Affine Constraints
    A. Barvinok
    [J]. Discrete & Computational Geometry, 2001, 25 : 23 - 31