On the exceptional sets in Sylvester expansions*

被引:0
|
作者
Meiying Lü
机构
[1] Chongqing Normal University,School of Mathematical Sciences
来源
关键词
Sylvester expansion; exceptional set; Hausdorff dimension; 11K55; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
For any x 𝜖 (0, 1], let the series ∑n=1∞1/dnx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\sum}_{n=1}^{\infty }1/{d}_n(x) $$\end{document} be the Sylvester expansion of x, where {dj(x), j ≥ 1} is a sequence of positive integers satisfying d1(x) ≥ 2 and dj + 1(x) ≥ dj(x)(dj(x) − 1) + 1 for j ≥ 1. Suppose ϕ : ℕ → ℝ+ is a function satisfying ϕ(n+1) – ϕ (n) → ∞ as n → ∞. In this paper, we consider the setEϕ=x∈01:limn→∞logdnx−∑j=1n−1logdjxϕn=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E\left(\phi \right)=\left\{x\kern0.5em \in \left(0,1\right]:\kern0.5em \underset{n\to \infty }{\lim}\frac{\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)}{\phi (n)}=1\right\} $$\end{document}
引用
收藏
页码:48 / 53
页数:5
相关论文
共 50 条
  • [21] Exceptional Sets
    A. S. Krivosheev
    O. A. Krivosheeva
    Journal of Mathematical Sciences, 2024, 285 (3) : 376 - 391
  • [22] Sylvester Expansions over the Field of P-adic
    Zou, Ruibiao
    Shen, Luming
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 471 - 475
  • [23] On clusters and exceptional sets
    Igusa, Kiyoshi
    Maresca, Ray
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [24] Level sets of β-expansions
    Fan, A
    Zhu, H
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (10) : 709 - 712
  • [25] A division algorithm approach to p-adic Sylvester expansions
    Errthum, Eric
    JOURNAL OF NUMBER THEORY, 2016, 160 : 1 - 10
  • [26] How many points have the same Engel and Sylvester expansions?
    Wu, J
    JOURNAL OF NUMBER THEORY, 2003, 103 (01) : 16 - 26
  • [27] Exceptional sets and fiber products
    Sommese, Andrew J.
    Wampler, Charles W.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (02) : 171 - 196
  • [28] Exceptional Sets for Diophantine Inequalities
    Parsell, Scott T.
    Wooley, Trevor D.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (14) : 3919 - 3974
  • [29] Exceptional sets in Hartogs domains
    Kot, P
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2005, 48 (04): : 580 - 586
  • [30] EXCEPTIONAL SETS FOR SPACES OF POTENTIALS
    ADAMS, DR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A570 - A571