Sylvester Expansions over the Field of P-adic

被引:0
|
作者
Zou, Ruibiao [1 ]
Shen, Luming [1 ]
机构
[1] Hunan Agr Univ, Coll Sci, Changsha 410128, Hunan, Peoples R China
来源
PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS | 2008年
关键词
Sylvester expansion; P-adic field; metric properties; approximation orders;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the Sylvester expansion over the field of p-adic is studied. Strong and weak number laws, central limit theorem, and iterated logarithm law of the digits occurring in this expansion are considered. At the same time, the approximation orders by rational fractions which are the partial sums of the series are investigated.
引用
收藏
页码:471 / 475
页数:5
相关论文
共 50 条
  • [1] A division algorithm approach to p-adic Sylvester expansions
    Errthum, Eric
    JOURNAL OF NUMBER THEORY, 2016, 160 : 1 - 10
  • [2] A characterization of rational numbers by p-adic Sylvester series expansions
    Laohakosol, Vichian
    Kanasri, Narakorn Rompurk
    ACTA ARITHMETICA, 2007, 130 (04) : 389 - 402
  • [3] ALGEBRAIC P-ADIC EXPANSIONS
    LAMPERT, D
    JOURNAL OF NUMBER THEORY, 1986, 23 (03) : 279 - 284
  • [4] On a recursive equation over a p-adic field
    Mukhamedov, Farrukh
    APPLIED MATHEMATICS LETTERS, 2007, 20 (01) : 88 - 92
  • [5] On p-adic Expansions of Algebraic Integers
    Chen, Hsing-Hau
    Huang, Ming-Deh
    PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, : 109 - 116
  • [6] ON SOME EXPANSIONS OF P-ADIC FUNCTIONS
    RUTKOWSKI, J
    ACTA ARITHMETICA, 1988, 51 (03) : 233 - 245
  • [7] APPROXIMATION OPERATORS AND SELFSIMILARITY OVER P-ADIC FIELD
    Zheng WeixingDept of MathNanjing UnivNanjing
    数学研究, 1994, (01) : 9 - 13
  • [8] PARABOLIC EQUATIONS OVER THE FIELD OF P-ADIC NUMBERS
    KOCHUBEI, AN
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 39 (03): : 1263 - 1280
  • [9] Remarks on p-Adic Cantor Series Expansions
    Kanasri, N. R.
    Laohakosol, V.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ALGEBRA 2010: ADVANCES IN ALGEBRAIC STRUCTURES, 2012, : 346 - 355
  • [10] NORMALITY OF SOME P-ADIC PRODUCT EXPANSIONS
    KNOPFMACHER, A
    KNOPFMACHER, J
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 49 : 258 - 263