Sylvester Expansions over the Field of P-adic

被引:0
|
作者
Zou, Ruibiao [1 ]
Shen, Luming [1 ]
机构
[1] Hunan Agr Univ, Coll Sci, Changsha 410128, Hunan, Peoples R China
来源
PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS | 2008年
关键词
Sylvester expansion; P-adic field; metric properties; approximation orders;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the Sylvester expansion over the field of p-adic is studied. Strong and weak number laws, central limit theorem, and iterated logarithm law of the digits occurring in this expansion are considered. At the same time, the approximation orders by rational fractions which are the partial sums of the series are investigated.
引用
收藏
页码:471 / 475
页数:5
相关论文
共 50 条
  • [41] REPRESENTATIONS OF U(2,1) OVER A P-ADIC FIELD
    MOY, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1986, 372 : 178 - 208
  • [42] ABELIAN GEOMETRIC FUNDAMENTAL GROUPS FOR CURVES OVER A p-ADIC FIELD
    Gazaki, Evangelia
    Hiranouchi, Toshiro
    arXiv, 2022,
  • [43] Abelian geometric fundamental groups for curves over a p-adic field
    Gazaki, Evangelia
    Hiranouchi, Toshiro
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (03): : 905 - 946
  • [44] RAMANUJAN BIGRAPHS ASSOCIATED WITH SU(3) OVER A p-ADIC FIELD
    Ballantine, Cristina
    Ciubotaru, Dan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (06) : 1939 - 1953
  • [45] Interaction measures on the space of distributions over the field of p-adic numbers
    Kochubei, AN
    Sait-Ametov, MR
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (03) : 389 - 411
  • [46] HECKE ALGEBRA ISOMORPHISMS FOR GL(N) OVER A P-ADIC FIELD
    HOWE, R
    MOY, A
    JOURNAL OF ALGEBRA, 1990, 131 (02) : 388 - 424
  • [47] SCHUR SUBGROUP OF A P-ADIC FIELD
    SPIEGEL, E
    TROJAN, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (02): : 300 - 303
  • [48] Nonlinear differential equations over the field of the complex p-adic numbers
    Escassut, A
    Khrennikov, A
    P-ADIC FUNCTIONAL ANALYSIS, 1997, 192 : 143 - 151
  • [49] Additive and multiplicative fractional differentiations over the field of p-adic numbers
    Kochubei, AN
    P-ADIC FUNCTIONAL ANALYSIS, 1997, 192 : 275 - 280
  • [50] ON p-ADIC PERIODS FOR MIXED TATE MOTIVES OVER A NUMBER FIELD
    Chatzistamatiou, Andre
    Unver, Sinan
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (05) : 825 - 844