For any x 𝜖 (0, 1], let the series ∑n=1∞1/dnx\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\sum}_{n=1}^{\infty }1/{d}_n(x) $$\end{document} be the Sylvester expansion of x, where {dj(x), j ≥ 1} is a sequence of positive integers satisfying d1(x) ≥ 2 and dj + 1(x) ≥ dj(x)(dj(x) − 1) + 1 for j ≥ 1. Suppose ϕ : ℕ → ℝ+ is a function satisfying ϕ(n+1) – ϕ (n) → ∞ as n → ∞. In this paper, we consider the setEϕ=x∈01:limn→∞logdnx−∑j=1n−1logdjxϕn=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ E\left(\phi \right)=\left\{x\kern0.5em \in \left(0,1\right]:\kern0.5em \underset{n\to \infty }{\lim}\frac{\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)}{\phi (n)}=1\right\} $$\end{document}