Spin Chains as Modules over the Affine Temperley–Lieb Algebra

被引:0
|
作者
Théo Pinet
Yvan Saint-Aubin
机构
[1] Université de Montréal,Département de mathématiques et statistique
[2] Université de Paris and Sorbonne Université,undefined
[3] CNRS,undefined
[4] IMJ-PRG,undefined
来源
关键词
Affine Temperley–Lieb algebra; Temperley–Lieb algebra; Quantum groups; Uqsl2; Feigin–Fuchs module; Schur–Weyl duality; Indecomposable projective; XXZ chain; Periodic XXZ chain; 16G99; 17B37; 20G42; 82B20;
D O I
暂无
中图分类号
学科分类号
摘要
The affine Temperley–Lieb algebra aTLN(β) is an infinite-dimensional algebra over ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}$\end{document} parametrized by a number β∈ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta \in \mathbb {C}$\end{document} and an integer N∈ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\in \mathbb {N}$\end{document}. It naturally acts on (ℂ2)⊗N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathbb {C}^{2})^{\otimes N}$\end{document} to produce a family of representations labeled by an additional parameter z∈ℂ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$z\in \mathbb C^{\times }$\end{document}. The structure of these representations, which were first introduced by Pasquier and Saleur (Nucl. Phys., 330, 523 1990) in their study of spin chains, is here made explicit. They share their composition factors with the cellular aTLN(β)-modules of Graham and Lehrer (Enseign. Math., 44, 173 1998), but differ from the latter by the direction of about half of the arrows of their Loewy diagrams. The proof of this statement uses a morphism introduced by Morin-Duchesne and Saint-Aubin (J. Phys. A, 46, 285207 2013) as well as new maps that intertwine various aTLN(β)-actions on the periodic chain and generalize applications studied by Deguchi et al. (J. Stat. Phys., 102, 701 2001) and after by Morin-Duchesne and Saint-Aubin (J. Phys. A, 46, 494013 2013).
引用
收藏
页码:2523 / 2584
页数:61
相关论文
共 50 条
  • [1] Spin Chains as Modules over the Affine Temperley-Lieb Algebra
    Pinet, Theo
    Saint-Aubin, Yvan
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (06) : 2523 - 2584
  • [2] On the computation of fusion over the affine Temperley-Lieb algebra
    Belletete, Jonathan
    Saint-Aubin, Yvan
    NUCLEAR PHYSICS B, 2018, 937 : 333 - 370
  • [3] Representations of the odd affine Temperley-Lieb algebra
    Reznikoff, Sarah A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 83 - 98
  • [4] ON ENVELOPING C*-ALGEBRA OF ONE AFFINE TEMPERLEY-LIEB ALGEBRA
    Savchuk, Yurii
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2006, 12 (03): : 296 - 300
  • [5] The nil Temperley-Lieb algebra of type affine C
    Green, R. M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (11) : 4966 - 4993
  • [6] Topological Defects in Lattice Models and Affine Temperley–Lieb Algebra
    J. Belletête
    A. M. Gainutdinov
    J. L. Jacobsen
    H. Saleur
    T. S. Tavares
    Communications in Mathematical Physics, 2023, 400 : 1203 - 1254
  • [7] A homomorphism between link and XXZ modules over the periodic Temperley-Lieb algebra
    Morin-Duchesne, Alexi
    Saint-Aubin, Yvan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (28)
  • [8] On spin systems related to the Temperley-Lieb algebra
    Kulish, PP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (38): : L489 - L493
  • [9] Fusion of irreducible modules in the periodic Temperley-Lieb algebra
    Ikhlef, Yacine
    Morin-Duchesne, Alexi
    SCIPOST PHYSICS, 2024, 17 (05):
  • [10] The principal indecomposable modules of the dilute Temperley-Lieb algebra
    Belletete, Jonathan
    Saint-Aubin, Yvan
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)