Fusion of irreducible modules in the periodic Temperley-Lieb algebra

被引:0
|
作者
Ikhlef, Yacine [1 ]
Morin-Duchesne, Alexi [2 ]
机构
[1] Sorbonne Univ, CNRS, Lab Phys Theor & Hautes Energies, LPTHE, F-75005 Paris, France
[2] Royal Mil Acad, Dept Math, B-1000 Brussels, Belgium
来源
SCIPOST PHYSICS | 2024年 / 17卷 / 05期
关键词
CRITICAL-POINT; PERCOLATION; MODELS; CHARGE;
D O I
10.21468/SciPostPhys.17.5.132
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new family Y k , t , x , y , [ z , w ] of modules over the enlarged periodic Temperley- Lieb algebra EPTLN(/3). These modules are built from link states with two marked points, similarly to the modules X k , t , x , y , z that we constructed in a previous paper. They however differ in the way that defects connect pairwise. We analyse the decomposition of Y k , t , x , y , [ z , w ] over the irreducible standard modules W k , x for generic values of the parameters z and w , and use it to deduce the fusion rules for the fusion W x W of standard modules. These turn out to be more symmetric than those obtained previously using the modules X k , t , x ,y,z. From the work of Graham and Lehrer, it is known that, for /3 = -q - q - 1 where q is not a root of unity, there exists a set of non-generic values of the twist y for which the standard module W t , y is indecomposable yet reducible with two composition factors: a radical submodule R t , y and a quotient module Q t , y . Here, we construct the fusion products W x R , W x Q and Q x Q , and analyse their decomposition over indecomposable modules. For the fusions involving the quotient modules Q , we find very simple results reminiscent of sl(2) fusion rules. This construction with modules Y k , t , x , y , [ z , w ] is a good lattice regularization of the operator product expansion in the underlying logarithmic bulk conformal field theory. Indeed, it fits with the correspondence between standard modules and connectivity operators, and is useful for the calculation of their correlation functions. Remarkably, we show that the fusion rules W x Q and Q x Q are consistent with the known fusion rules of degenerate primary fields.
引用
收藏
页数:70
相关论文
共 50 条
  • [1] THE BLOB ALGEBRA AND THE PERIODIC TEMPERLEY-LIEB ALGEBRA
    MARTIN, P
    SALEUR, H
    LETTERS IN MATHEMATICAL PHYSICS, 1994, 30 (03) : 189 - 206
  • [2] A fusion for the periodic Temperley-Lieb algebra and its continuum limit
    Gainutdinov, Azat M.
    Jacobsen, Jesper Lykke
    Saleur, Hubert
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [3] A fusion for the periodic Temperley-Lieb algebra and its continuum limit
    Azat M. Gainutdinov
    Jesper Lykke Jacobsen
    Hubert Saleur
    Journal of High Energy Physics, 2018
  • [4] Fusion in the periodic Temperley-Lieb algebra and connectivity operators of loop models
    Ikhlef, Yacine
    Morin-Duchesne, Alexi
    SCIPOST PHYSICS, 2022, 12 (01):
  • [5] A homomorphism between link and XXZ modules over the periodic Temperley-Lieb algebra
    Morin-Duchesne, Alexi
    Saint-Aubin, Yvan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (28)
  • [6] The principal indecomposable modules of the dilute Temperley-Lieb algebra
    Belletete, Jonathan
    Saint-Aubin, Yvan
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [7] Standard modules, induction and the structure of the Temperley-Lieb algebra
    Ridout, David
    St-Aubin, Yvan
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 18 (05) : 957 - 1041
  • [8] On the computation of fusion over the affine Temperley-Lieb algebra
    Belletete, Jonathan
    Saint-Aubin, Yvan
    NUCLEAR PHYSICS B, 2018, 937 : 333 - 370
  • [9] CALCULATIONS WITH THE TEMPERLEY-LIEB ALGEBRA
    LICKORISH, WBR
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (04) : 571 - 591
  • [10] Framization of the Temperley-Lieb algebra
    Goundaroulis, Dimos
    Juyumaya, Jesus
    Kontogeorgis, Aristides
    Lambropoulou, Sofia
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 299 - 345