Fusion of irreducible modules in the periodic Temperley-Lieb algebra

被引:0
|
作者
Ikhlef, Yacine [1 ]
Morin-Duchesne, Alexi [2 ]
机构
[1] Sorbonne Univ, CNRS, Lab Phys Theor & Hautes Energies, LPTHE, F-75005 Paris, France
[2] Royal Mil Acad, Dept Math, B-1000 Brussels, Belgium
来源
SCIPOST PHYSICS | 2024年 / 17卷 / 05期
关键词
CRITICAL-POINT; PERCOLATION; MODELS; CHARGE;
D O I
10.21468/SciPostPhys.17.5.132
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new family Y k , t , x , y , [ z , w ] of modules over the enlarged periodic Temperley- Lieb algebra EPTLN(/3). These modules are built from link states with two marked points, similarly to the modules X k , t , x , y , z that we constructed in a previous paper. They however differ in the way that defects connect pairwise. We analyse the decomposition of Y k , t , x , y , [ z , w ] over the irreducible standard modules W k , x for generic values of the parameters z and w , and use it to deduce the fusion rules for the fusion W x W of standard modules. These turn out to be more symmetric than those obtained previously using the modules X k , t , x ,y,z. From the work of Graham and Lehrer, it is known that, for /3 = -q - q - 1 where q is not a root of unity, there exists a set of non-generic values of the twist y for which the standard module W t , y is indecomposable yet reducible with two composition factors: a radical submodule R t , y and a quotient module Q t , y . Here, we construct the fusion products W x R , W x Q and Q x Q , and analyse their decomposition over indecomposable modules. For the fusions involving the quotient modules Q , we find very simple results reminiscent of sl(2) fusion rules. This construction with modules Y k , t , x , y , [ z , w ] is a good lattice regularization of the operator product expansion in the underlying logarithmic bulk conformal field theory. Indeed, it fits with the correspondence between standard modules and connectivity operators, and is useful for the calculation of their correlation functions. Remarkably, we show that the fusion rules W x Q and Q x Q are consistent with the known fusion rules of degenerate primary fields.
引用
收藏
页数:70
相关论文
共 50 条
  • [21] Categorification of the Temperley-Lieb algebra by bimodules
    Gobet, Thomas
    JOURNAL OF ALGEBRA, 2014, 419 : 277 - 317
  • [22] Ribbon Graphs and Temperley-Lieb Algebra
    Chbili, Nafaa
    KNOT THEORY AND ITS APPLICATIONS, 2016, 670 : 299 - 312
  • [23] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    STATISTICAL PHYSICS, HIGH ENERGY, CONDENSED MATTER AND MATHEMATICAL PHYSICS, 2008, : 277 - +
  • [24] THE TEMPERLEY-LIEB ALGEBRA AT ROOTS OF UNITY
    GOODMAN, FM
    WENZL, H
    PACIFIC JOURNAL OF MATHEMATICS, 1993, 161 (02) : 307 - 334
  • [25] Seminormal forms for the Temperley-Lieb algebra
    Bastias, Katherine Ormeno
    Ryom-Hansen, Steen
    JOURNAL OF ALGEBRA, 2025, 662 : 852 - 901
  • [26] Representations of the odd affine Temperley-Lieb algebra
    Reznikoff, Sarah A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 83 - 98
  • [27] The two-boundary Temperley-Lieb algebra
    de Gier, Jan
    Nichols, Alexander
    JOURNAL OF ALGEBRA, 2009, 321 (04) : 1132 - 1167
  • [28] Framization of a Temperley-Lieb algebra of type B
    Flores, M.
    Goundaroulis, D.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (06)
  • [29] Temperley-Lieb planar algebra modules arising from the ADE planar algebras
    Reznikoff, SA
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 228 (02) : 445 - 468
  • [30] On spin systems related to the Temperley-Lieb algebra
    Kulish, PP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (38): : L489 - L493