Fusion of irreducible modules in the periodic Temperley-Lieb algebra

被引:0
|
作者
Ikhlef, Yacine [1 ]
Morin-Duchesne, Alexi [2 ]
机构
[1] Sorbonne Univ, CNRS, Lab Phys Theor & Hautes Energies, LPTHE, F-75005 Paris, France
[2] Royal Mil Acad, Dept Math, B-1000 Brussels, Belgium
来源
SCIPOST PHYSICS | 2024年 / 17卷 / 05期
关键词
CRITICAL-POINT; PERCOLATION; MODELS; CHARGE;
D O I
10.21468/SciPostPhys.17.5.132
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new family Y k , t , x , y , [ z , w ] of modules over the enlarged periodic Temperley- Lieb algebra EPTLN(/3). These modules are built from link states with two marked points, similarly to the modules X k , t , x , y , z that we constructed in a previous paper. They however differ in the way that defects connect pairwise. We analyse the decomposition of Y k , t , x , y , [ z , w ] over the irreducible standard modules W k , x for generic values of the parameters z and w , and use it to deduce the fusion rules for the fusion W x W of standard modules. These turn out to be more symmetric than those obtained previously using the modules X k , t , x ,y,z. From the work of Graham and Lehrer, it is known that, for /3 = -q - q - 1 where q is not a root of unity, there exists a set of non-generic values of the twist y for which the standard module W t , y is indecomposable yet reducible with two composition factors: a radical submodule R t , y and a quotient module Q t , y . Here, we construct the fusion products W x R , W x Q and Q x Q , and analyse their decomposition over indecomposable modules. For the fusions involving the quotient modules Q , we find very simple results reminiscent of sl(2) fusion rules. This construction with modules Y k , t , x , y , [ z , w ] is a good lattice regularization of the operator product expansion in the underlying logarithmic bulk conformal field theory. Indeed, it fits with the correspondence between standard modules and connectivity operators, and is useful for the calculation of their correlation functions. Remarkably, we show that the fusion rules W x Q and Q x Q are consistent with the known fusion rules of degenerate primary fields.
引用
收藏
页数:70
相关论文
共 50 条
  • [31] 3-MANIFOLDS AND THE TEMPERLEY-LIEB ALGEBRA
    LICKORISH, WBR
    MATHEMATISCHE ANNALEN, 1991, 290 (04) : 657 - 670
  • [32] Temperley-Lieb algebra of type B.
    Vincenti, C
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (04) : 233 - 236
  • [33] Teleportation, braid group and Temperley-Lieb algebra
    Zhang, Yong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (37): : 11599 - 11622
  • [34] Fusion and monodromy in the Temperley-Lieb category
    Belletete, Jonathan
    Saint-Aubin, Yvan
    SCIPOST PHYSICS, 2018, 5 (04):
  • [35] The matrix of chromatic joins and the Temperley-Lieb algebra
    Cautis, S
    Jackson, DM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 89 (01) : 109 - 155
  • [36] The partial Temperley-Lieb algebra and its representations
    Doty, Stephen
    Giaquinto, Anthony
    JOURNAL OF COMBINATORIAL ALGEBRA, 2023, 7 (3-4) : 401 - 439
  • [37] On the representation theory of the infinite Temperley-Lieb algebra
    Moore, Stephen T.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (11)
  • [38] Boundary weights for Temperley-Lieb and dilute Temperley-Lieb models
    Behrend, RE
    Pearce, PA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (23): : 2833 - 2847
  • [39] ON ENVELOPING C*-ALGEBRA OF ONE AFFINE TEMPERLEY-LIEB ALGEBRA
    Savchuk, Yurii
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2006, 12 (03): : 296 - 300
  • [40] On correlation functions in models related to the Temperley-Lieb algebra
    Fukai, Kohei
    Kleinemuehl, Raphael
    Pozsgay, Balazs
    Vernier, Eric
    SCIPOST PHYSICS, 2024, 16 (01):