Asymptotic formulas of the eigenvalues for the linearization of a one-dimensional sinh-Poisson equation

被引:0
|
作者
Shuya Aizawa
Yasuhito Miyamoto
Tohru Wakasa
机构
[1] The University of Tokyo,Department of Integrated Science, College of Arts and Science
[2] The University of Tokyo,Graduate School of Mathematical Sciences
[3] Kyushu Institute of Technology,Department of Basic Sciences
来源
Journal of Elliptic and Parabolic Equations | 2023年 / 9卷
关键词
Exact eigenvalues; Exact solutions; Jacobi elliptic functions; Complete elliptic integrals; Primary 34L15; 35K57; Secondary 34K18; 34K27;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with a Neumann problem of a one-dimensional sinh-Poisson equation u′′+λsinhu=0for0<x<1,u′(0)=u′(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u''+\lambda \sinh u=0 &{} \text {for}\ 0<x<1,\\ u'(0)=u'(1)=0, \end{array}\right. } \end{aligned}$$\end{document}where λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter. A complete bifurcation diagram of this problem is obtained. We also consider the linearized eigenvalue problem at every nontrivial solution u. We derive exact expressions of all the eigenvalues and eigenfunctions, using Jacobi elliptic functions and complete elliptic integrals. Then, we also derive asymptotic formulas of eigenvalues as λ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \rightarrow 0$$\end{document}. Exact eigenvalues and eigenfunctions for a Dirichlet problem are presented without proof. The main technical tool is an ODE technique.
引用
收藏
页码:1043 / 1070
页数:27
相关论文
共 50 条