Asymptotic formulas of the eigenvalues for the linearization of a one-dimensional sinh-Poisson equation

被引:0
|
作者
Shuya Aizawa
Yasuhito Miyamoto
Tohru Wakasa
机构
[1] The University of Tokyo,Department of Integrated Science, College of Arts and Science
[2] The University of Tokyo,Graduate School of Mathematical Sciences
[3] Kyushu Institute of Technology,Department of Basic Sciences
来源
Journal of Elliptic and Parabolic Equations | 2023年 / 9卷
关键词
Exact eigenvalues; Exact solutions; Jacobi elliptic functions; Complete elliptic integrals; Primary 34L15; 35K57; Secondary 34K18; 34K27;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with a Neumann problem of a one-dimensional sinh-Poisson equation u′′+λsinhu=0for0<x<1,u′(0)=u′(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u''+\lambda \sinh u=0 &{} \text {for}\ 0<x<1,\\ u'(0)=u'(1)=0, \end{array}\right. } \end{aligned}$$\end{document}where λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter. A complete bifurcation diagram of this problem is obtained. We also consider the linearized eigenvalue problem at every nontrivial solution u. We derive exact expressions of all the eigenvalues and eigenfunctions, using Jacobi elliptic functions and complete elliptic integrals. Then, we also derive asymptotic formulas of eigenvalues as λ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \rightarrow 0$$\end{document}. Exact eigenvalues and eigenfunctions for a Dirichlet problem are presented without proof. The main technical tool is an ODE technique.
引用
收藏
页码:1043 / 1070
页数:27
相关论文
共 50 条
  • [21] Changing-sign bubble solutions for an anisotropic sinh-Poisson equation
    Long Wei
    Nonlinear Differential Equations and Applications NoDEA, 2011, 18 : 685 - 706
  • [22] A note on a sinh-Poisson type equation with variable intensities on pierced domains
    Figueroa, Pablo
    ASYMPTOTIC ANALYSIS, 2021, 122 (3-4) : 327 - 348
  • [23] Breather-Type Periodic Soliton Solutions for (1+1)-Dimensional Sinh-Poisson Equation
    许镇辉
    陈翰林
    鲜大权
    Communications in Theoretical Physics, 2012, 57 (03) : 400 - 402
  • [24] Morse Index of Multiple Blow-Up Solutions to the Two-Dimensional Sinh-Poisson Equation
    Freddi, Ruggero
    ANALYSIS IN THEORY AND APPLICATIONS, 2022, 38 (01): : 26 - 78
  • [25] SIGN-CHANGING TOWER OF BUBBLES FOR A SINH-POISSON EQUATION WITH ASYMMETRIC EXPONENTS
    Pistoia, Angela
    Ricciardi, Tonia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (11) : 5651 - 5692
  • [26] Sign-changing solutions for the sinh-Poisson equation with Robin boundary condition
    Figueroa, Pablo
    Iturriaga, Leonelo
    Topp, Erwin
    JOURNAL D ANALYSE MATHEMATIQUE, 2025,
  • [27] EIGENVALUES OF LIOUVILLE EQUATION FOR A ONE-DIMENSIONAL SYSTEM
    SUTHERLAND, B
    PHYSICAL REVIEW LETTERS, 1969, 22 (09) : 393 - +
  • [28] Blow-up behavior for a degenerate elliptic sinh-Poisson equation with variable intensities
    Ricciardi, Tonia
    Takahashi, Ryo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (06)
  • [29] Minimal blow-up masses and existence of solutions for an asymmetric sinh-Poisson equation
    Ricciardi, Tonia
    Zecca, Gabriella
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (14-15) : 2375 - 2387
  • [30] Stable solutions to the nonlinear RLC transmission line equation and the Sinh-Poisson equation arising in mathematical physics
    Kayum, Md Abdul
    Seadawy, Aly R.
    Akbar, Ali M.
    Sugati, Taghreed G.
    OPEN PHYSICS, 2020, 18 (01): : 710 - 725