Upper triangular operator matrices, asymptotic intertwining and Browder, Weyl theorems

被引:0
|
作者
Bhagwati P Duggal
In Ho Jeon
In Hyoun Kim
机构
[1] Seoul National University of Education,Department of Mathematics Education
[2] Incheon National University,Department of Mathematics
关键词
Banach space; asymptotically intertwined; SVEP; polaroid operator;
D O I
暂无
中图分类号
学科分类号
摘要
Given a Banach space X, let MC∈B(X⊕X) denote the upper triangular operator matrix MC=(AC0B), and let δAB∈B(B(X)) denote the generalized derivation δAB(X)=AX−XB. If limn→∞∥δABn(C)∥1n=0, then σx(MC)=σx(M0), where σx stands for the spectrum or a distinguished part thereof (but not the point spectrum); furthermore, if R=R1⊕R2∈B(X⊕X) is a Riesz operator which commutes with MC, then σx(MC+R)=σx(MC), where σx stands for the Fredholm essential spectrum or a distinguished part thereof. These results are applied to prove the equivalence of Browder’s (a-Browder’s) theorem for M0, MC, M0+R and MC+R. Sufficient conditions for the equivalence of Weyl’s (a-Weyl’s) theorem are also considered.
引用
收藏
相关论文
共 50 条
  • [41] Drazin invertibility of upper triangular operator matrices
    Boumazgour, Mohamed
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05): : 627 - 634
  • [42] Property (R) for Upper Triangular Operator Matrices
    Yang, Li Li
    Cao, Xiao Hong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (03) : 523 - 532
  • [43] Essential spectrum of upper triangular operator matrices
    Wu, Xiufeng
    Huang, Junjie
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 780 - 798
  • [44] Fredholm complements of upper triangular operator matrices
    Qiu, Sinan
    Jiang, Lining
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)
  • [45] ON THE DRAZIN INVERSE FOR UPPER TRIANGULAR OPERATOR MATRICES
    Zguitti, Hassane
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (02): : 27 - 33
  • [46] Property (R) for Upper Triangular Operator Matrices
    Li Li Yang
    Xiao Hong Cao
    Acta Mathematica Sinica, English Series, 2023, 39 : 523 - 532
  • [47] The (Generalized) Weylness of Upper Triangular Operator Matrices
    Dong, J.
    Cao, X. H.
    ANALYSIS MATHEMATICA, 2020, 46 (03) : 465 - 481
  • [48] Essential spectrum of upper triangular operator matrices
    Xiufeng Wu
    Junjie Huang
    Annals of Functional Analysis, 2020, 11 : 780 - 798
  • [49] Riesz points of upper triangular operator matrices
    Barnes, BA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (05) : 1343 - 1347
  • [50] Weyl's theorem for upper triangular operator matrix and perturbations
    Cui, Miaomiao
    Cao, Xiaohong
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (07): : 1299 - 1310