Upper triangular operator matrices, asymptotic intertwining and Browder, Weyl theorems

被引:0
|
作者
Bhagwati P Duggal
In Ho Jeon
In Hyoun Kim
机构
[1] Seoul National University of Education,Department of Mathematics Education
[2] Incheon National University,Department of Mathematics
关键词
Banach space; asymptotically intertwined; SVEP; polaroid operator;
D O I
暂无
中图分类号
学科分类号
摘要
Given a Banach space X, let MC∈B(X⊕X) denote the upper triangular operator matrix MC=(AC0B), and let δAB∈B(B(X)) denote the generalized derivation δAB(X)=AX−XB. If limn→∞∥δABn(C)∥1n=0, then σx(MC)=σx(M0), where σx stands for the spectrum or a distinguished part thereof (but not the point spectrum); furthermore, if R=R1⊕R2∈B(X⊕X) is a Riesz operator which commutes with MC, then σx(MC+R)=σx(MC), where σx stands for the Fredholm essential spectrum or a distinguished part thereof. These results are applied to prove the equivalence of Browder’s (a-Browder’s) theorem for M0, MC, M0+R and MC+R. Sufficient conditions for the equivalence of Weyl’s (a-Weyl’s) theorem are also considered.
引用
收藏
相关论文
共 50 条
  • [31] Spectra of upper triangular operator matrices
    Benhida, C
    Zerouali, EH
    Zguitti, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) : 3013 - 3020
  • [32] NEW BROWDER AND WEYL TYPE THEOREMS
    Berkani, Mohammed
    Kachad, Mohammed
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 439 - 452
  • [33] Weyl Type Theorems for Complex Symmetric Operator Matrices
    An, Il Ju
    Ko, Eungil
    Lee, Ji Eun
    FILOMAT, 2017, 31 (09) : 2891 - 2900
  • [34] Self-Adjoint Perturbations of Left (Right) Weyl Spectrum for Upper Triangular Operator Matrices
    Wu, Xiufeng
    Huang, Junjie
    Chen, Alatancang
    FILOMAT, 2022, 36 (13) : 4385 - 4395
  • [35] PROPERTY (w) OF UPPER TRIANGULAR OPERATOR MATRICES
    Rashid, Mohammad H. M.
    TAMKANG JOURNAL OF MATHEMATICS, 2020, 51 (02): : 81 - 99
  • [36] The (Generalized) Weylness of Upper Triangular Operator Matrices
    J. Dong
    X. H. Cao
    Analysis Mathematica, 2020, 46 : 465 - 481
  • [37] Consistent invertibility of upper triangular operator matrices
    Hai, Guojun
    Chen, Alatancang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 455 : 22 - 31
  • [38] Property(R) for Upper Triangular Operator Matrices
    Li Li YANG
    Xiao Hong CAO
    Acta Mathematica Sinica,English Series, 2023, (03) : 523 - 532
  • [39] Drazin invertibility of upper triangular operator matrices
    Cvetkovic-Ilic, D. S.
    Pavlovic, V.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02): : 260 - 267
  • [40] On the perturbations of spectra of upper triangular operator matrices
    Barraa, Mohamed
    Boumazgour, Mohamed
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (01) : 315 - 322