Markov type constants, flat tori and Wasserstein spaces

被引:0
|
作者
Vladimir Zolotov
机构
[1] Russian Academy of Sciences,Steklov Institute of Mathematics
[2] St. Petersburg State University,Mathematics and Mechanics Faculty
来源
Geometriae Dedicata | 2018年 / 195卷
关键词
Markov type; Alexandrov space; Flat manifold; Wasserstein space; 51F99;
D O I
暂无
中图分类号
学科分类号
摘要
Let Mp(X,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_p(X,T)$$\end{document} denote the Markov type p constant at time T of a metric space X, where p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge 1$$\end{document}. We show that Mp(Y,T)≤Mp(X,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_p(Y,T) \le M_p(X,T)$$\end{document} in each of the following cases: (a) X and Y are geodesic spaces and Y is covered by X via a finite-sheeted locally isometric covering, (b) Y is the quotient of X by a finite group of isometries, (c) Y is the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Wasserstein space over X. As an application of (a) we show that all compact flat manifolds have Markov type 2 with constant 1. In particular the circle with its intrinsic metric has Markov type 2 with constant 1. This answers the question raised by S.-I. Ohta and M. Pichot. Parts (b) and (c) imply new upper bounds for Markov type constants of the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Wasserstein space over Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}. These bounds were conjectured by A. Andoni, A. Naor and O. Neiman. They imply certain restrictions on bi-Lipschitz embeddability of snowflakes into such Wasserstein spaces.
引用
收藏
页码:249 / 263
页数:14
相关论文
共 50 条
  • [1] Markov type constants, flat tori and Wasserstein spaces
    Zolotov, Vladimir
    GEOMETRIAE DEDICATA, 2018, 195 (01) : 249 - 263
  • [2] FINITE-TYPE IMMERSIONS OF FLAT TORI INTO EUCLIDEAN SPACES
    BAIKOUSSIS, C
    DEFEVER, F
    KOUFOGIORGOS, T
    VERSTRAELEN, L
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 : 413 - 420
  • [3] TYPE SPACES AND WASSERSTEIN SPACES
    Song, Shichang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) : 447 - 469
  • [4] Moduli Spaces of Flat Tori with Prescribed Holonomy
    Ghazouani, Selim
    Pirio, Luc
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (06) : 1289 - 1366
  • [5] Moduli Spaces of Flat Tori with Prescribed Holonomy
    Selim Ghazouani
    Luc Pirio
    Geometric and Functional Analysis, 2017, 27 : 1289 - 1366
  • [6] METRICS AND COMPACTIFICATIONS OF TEICHMULLER SPACES OF FLAT TORI
    Greenfield, Mark
    Ji, Lizhen
    ASIAN JOURNAL OF MATHEMATICS, 2021, 25 (04) : 477 - 504
  • [7] The deformation spaces of geodesic triangulations of flat tori
    Luo, Yanwen
    Wu, Tianqi
    Zhu, Xiaoping
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (07):
  • [8] MODULI SPACES OF FLAT CONNECTIONS AND MORITA EQUIVALENCE OF QUANTUM TORI
    Severa, Pavol
    DOCUMENTA MATHEMATICA, 2012, 17 : 607 - 625
  • [9] A note on Markov type constants
    Shin-Ichi Ohta
    Mikaël Pichot
    Archiv der Mathematik, 2009, 92 : 80 - 88
  • [10] McDiarmid type inequalities for Wasserstein contractive Markov chains
    Wang, Neng-Yi
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2025, 30