Markov type constants, flat tori and Wasserstein spaces

被引:0
|
作者
Vladimir Zolotov
机构
[1] Russian Academy of Sciences,Steklov Institute of Mathematics
[2] St. Petersburg State University,Mathematics and Mechanics Faculty
来源
Geometriae Dedicata | 2018年 / 195卷
关键词
Markov type; Alexandrov space; Flat manifold; Wasserstein space; 51F99;
D O I
暂无
中图分类号
学科分类号
摘要
Let Mp(X,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_p(X,T)$$\end{document} denote the Markov type p constant at time T of a metric space X, where p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge 1$$\end{document}. We show that Mp(Y,T)≤Mp(X,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_p(Y,T) \le M_p(X,T)$$\end{document} in each of the following cases: (a) X and Y are geodesic spaces and Y is covered by X via a finite-sheeted locally isometric covering, (b) Y is the quotient of X by a finite group of isometries, (c) Y is the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Wasserstein space over X. As an application of (a) we show that all compact flat manifolds have Markov type 2 with constant 1. In particular the circle with its intrinsic metric has Markov type 2 with constant 1. This answers the question raised by S.-I. Ohta and M. Pichot. Parts (b) and (c) imply new upper bounds for Markov type constants of the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Wasserstein space over Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}. These bounds were conjectured by A. Andoni, A. Naor and O. Neiman. They imply certain restrictions on bi-Lipschitz embeddability of snowflakes into such Wasserstein spaces.
引用
收藏
页码:249 / 263
页数:14
相关论文
共 50 条
  • [21] CHARACTERIZATION OF STANDARD FLAT TORI
    CHEN, BY
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 37 (02) : 564 - 567
  • [22] On the Nodal Count for Flat Tori
    Jochen Brüning
    David Fajman
    Communications in Mathematical Physics, 2012, 313 : 791 - 813
  • [23] Focal rigidity of flat tori
    Kwakkel, Ferry
    Martens, Marco
    Peixoto, Mauricio
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2011, 83 (04): : 1149 - 1158
  • [24] LOCAL ISOMETRIES OF FLAT TORI
    HELFENST.HG
    PACIFIC JOURNAL OF MATHEMATICS, 1970, 32 (01) : 113 - &
  • [25] On the Nodal Count for Flat Tori
    Bruening, Jochen
    Fajman, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 313 (03) : 791 - 813
  • [26] Configuration spaces of tori
    Feler, Yoel
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2007, 18 (02) : 139 - 151
  • [27] A Universal Triangulation for Flat Tori
    Lazarus, Francis
    Tallerie, Florent
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (01) : 278 - 307
  • [28] CHARACTERIZATION OF RIEMANNIAN FLAT TORI
    LAFONTAINE, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (04): : 291 - 293
  • [29] Minimal surfaces in flat tori
    Arezzo, C
    Micallef, MJ
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (04) : 679 - 701
  • [30] Skew loops in flat tori
    Bruce Solomon
    Geometriae Dedicata, 2007, 128 : 33 - 37