Markov type constants, flat tori and Wasserstein spaces

被引:0
|
作者
Vladimir Zolotov
机构
[1] Russian Academy of Sciences,Steklov Institute of Mathematics
[2] St. Petersburg State University,Mathematics and Mechanics Faculty
来源
Geometriae Dedicata | 2018年 / 195卷
关键词
Markov type; Alexandrov space; Flat manifold; Wasserstein space; 51F99;
D O I
暂无
中图分类号
学科分类号
摘要
Let Mp(X,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_p(X,T)$$\end{document} denote the Markov type p constant at time T of a metric space X, where p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge 1$$\end{document}. We show that Mp(Y,T)≤Mp(X,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_p(Y,T) \le M_p(X,T)$$\end{document} in each of the following cases: (a) X and Y are geodesic spaces and Y is covered by X via a finite-sheeted locally isometric covering, (b) Y is the quotient of X by a finite group of isometries, (c) Y is the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Wasserstein space over X. As an application of (a) we show that all compact flat manifolds have Markov type 2 with constant 1. In particular the circle with its intrinsic metric has Markov type 2 with constant 1. This answers the question raised by S.-I. Ohta and M. Pichot. Parts (b) and (c) imply new upper bounds for Markov type constants of the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Wasserstein space over Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}. These bounds were conjectured by A. Andoni, A. Naor and O. Neiman. They imply certain restrictions on bi-Lipschitz embeddability of snowflakes into such Wasserstein spaces.
引用
收藏
页码:249 / 263
页数:14
相关论文
共 50 条
  • [41] Approximation of splines in Wasserstein spaces
    Justiniano, Jorge
    Rumpf, Martin
    Erbar, Matthias
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [42] Even Hamiltonian systems on tori and cotangent spaces of tori
    Bartsch, T
    Wang, ZQ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) : 4123 - 4134
  • [43] SNOWFLAKE UNIVERSALITY OF WASSERSTEIN SPACES
    Andoni, Alexandr
    Naor, Assaf
    Neiman, Ofer
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2018, 51 (03): : 657 - 700
  • [44] On Finsler spaces of douglas type IV:: Projectively flat Kropina spaces
    Bácsó, S
    Matsumoto, M
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (1-2): : 213 - 221
  • [45] On Finsler spaces of Douglas type II.: Projectively flat spaces
    Bácsó, S
    Matsumoto, M
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 53 (3-4): : 423 - 438
  • [46] A Wasserstein-type Distance to Measure Deviation from Equilibrium of Quantum Markov Semigroups
    Agredo, Julian
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2013, 20 (02):
  • [47] Trigonal minimal surfaces in flat tori
    Shoda, Toshihiro
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 232 (02) : 401 - 422
  • [48] Function spaces on quantum tori
    Xiong, Xiao
    Xu, Quanhua
    Yin, Zhi
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (08) : 729 - 734
  • [49] Orbit spaces of Small Tori
    Annette A’campo-Neuen
    Jürgen Hausen
    Results in Mathematics, 2003, 43 (1-2) : 13 - 22
  • [50] On Embeddings of Tori in Euclidean Spaces
    Matija CENCELJ Duan REPOVS Institute of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2005, 21 (02) : 435 - 438