McDiarmid type inequalities for Wasserstein contractive Markov chains

被引:0
|
作者
Wang, Neng-Yi [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
concentration inequalities; Markov chains; Wasserstein metrics; TRANSPORTATION;
D O I
10.1214/25-ECP655
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, under a weak and general condition, we establish explicit McDiarmid type concentration inequalities for general functionals of Wasserstein contractive Markov chains. Our approach is different from those commonly used to establish McDiarmid's inequalities. In particular cases, our result recovers some existing concentration inequalities.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A quantitative McDiarmid's inequality for geometrically ergodic Markov chains
    Havet, Antoine
    Lerasle, Matthieu
    Moulines, Eric
    Vernet, Elodie
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25
  • [2] Central limit theorems for contractive Markov chains
    Lagerås, AN
    Stenflo, Ö
    NONLINEARITY, 2005, 18 (05) : 1955 - 1965
  • [3] New Bernstein and Hoeffding type inequalities for regenerative Markov chains
    Bertail, Patrice
    Ciolek, Gabriela
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (01): : 259 - 277
  • [4] Subgeometric rates of convergence in Wasserstein distance for Markov chains
    Durmus, Alain
    Fort, Gersende
    Moulines, Eric
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1799 - 1822
  • [5] Perturbation theory for Markov chains via Wasserstein distance
    Rudolf, Daniel
    Schweizer, Nikolaus
    BERNOULLI, 2018, 24 (4A) : 2610 - 2639
  • [6] Nash inequalities for finite Markov chains
    Diaconis, P
    SaloffCoste, L
    JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (02) : 459 - 510
  • [7] Exponential inequalities for nonstationary Markov chains
    Alquier, Pierre
    Doukhan, Paul
    Fan, Xiequan
    DEPENDENCE MODELING, 2019, 7 (01): : 150 - 168
  • [8] CHEEGER INEQUALITIES FOR ABSORBING MARKOV CHAINS
    Froyland, Gary
    Stuart, Robyn M.
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (03) : 631 - 647
  • [9] Wasserstein distance in speed limit inequalities for Markov jump processes
    Shiraishi, Naoto
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (07):
  • [10] ON GRADIENT STRUCTURES FOR MARKOV CHAINS AND THE PASSAGE TO WASSERSTEIN GRADIENT FLOWS
    Disser, Karoline
    Liero, Matthias
    NETWORKS AND HETEROGENEOUS MEDIA, 2015, 10 (02) : 233 - 253