Packing chromatic number versus chromatic and clique number

被引:0
|
作者
Boštjan Brešar
Sandi Klavžar
Douglas F. Rall
Kirsti Wash
机构
[1] University of Maribor,Faculty of Natural Sciences and Mathematics
[2] Institute of Mathematics,Faculty of Mathematics and Physics
[3] Physics and Mechanics,Department of Mathematics
[4] University of Ljubljana,Department of Mathematics
[5] Furman University,undefined
[6] Western New England University,undefined
来源
Aequationes mathematicae | 2018年 / 92卷
关键词
Packing chromatic number; Chromatic number; Clique number; Independence number; Mycielskian; 05C70; 05C15; 05C12;
D O I
暂无
中图分类号
学科分类号
摘要
The packing chromatic number χρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\rho }(G)$$\end{document} of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_i$$\end{document}, i∈[k]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\in [k]$$\end{document}, where each Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_i$$\end{document} is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that ω(G)=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (G) = a$$\end{document}, χ(G)=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (G) = b$$\end{document}, and χρ(G)=c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\rho }(G) = c$$\end{document}. If so, we say that (a, b, c) is realizable. It is proved that b=c≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=c\ge 3$$\end{document} implies a=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=b$$\end{document}, and that triples (2,k,k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,k,k+1)$$\end{document} and (2,k,k+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,k,k+2)$$\end{document} are not realizable as soon as k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 4$$\end{document}. Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on χρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\rho }(G)$$\end{document} in terms of Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document} and α(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)$$\end{document} is also proved.
引用
收藏
页码:497 / 513
页数:16
相关论文
共 50 条
  • [21] Relationships between the clique number, chromatic number, and the degree for some graphs
    Berlov S.L.
    Automatic Control and Computer Sciences, 2010, 44 (07) : 407 - 414
  • [22] Chromatic number and clique number of subgraphs of regular graph of matrix algebras
    Akbari, S.
    Aryapoor, M.
    Jamaali, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2419 - 2424
  • [23] New Construction of Graphs with High Chromatic Number and Small Clique Number
    Hamid Reza Daneshpajouh
    Discrete & Computational Geometry, 2018, 59 : 238 - 245
  • [24] Towards optimal lower bounds for clique and chromatic number
    Engebretsen, L
    Holmerin, J
    THEORETICAL COMPUTER SCIENCE, 2003, 299 (1-3) : 537 - 584
  • [25] Packing Chromatic Number of Subdivisions of Cubic Graphs
    Balogh, Jozsef
    Kostochka, Alexandr
    Liu, Xujun
    GRAPHS AND COMBINATORICS, 2019, 35 (02) : 513 - 537
  • [26] The packing chromatic number of infinite product graphs
    Fiala, Jiri
    Klavzar, Sandi
    Lidicky, Bernard
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1101 - 1113
  • [27] On the packing chromatic number of square and hexagonal lattice
    Korze, Danilo
    Vesel, Aleksander
    ARS MATHEMATICA CONTEMPORANEA, 2014, 7 (01) : 13 - 22
  • [28] Packing Chromatic Number of Subdivisions of Cubic Graphs
    József Balogh
    Alexandr Kostochka
    Xujun Liu
    Graphs and Combinatorics, 2019, 35 : 513 - 537
  • [29] THE S-PACKING CHROMATIC NUMBER OF A GRAPH
    Goddard, Wayne
    Xu, Honghai
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) : 795 - 806
  • [30] On the packing chromatic number of subcubic outerplanar graphs
    Gastineau, Nicolas
    Holub, Premysl
    Togni, Olivier
    DISCRETE APPLIED MATHEMATICS, 2019, 255 : 209 - 221