The packing chromatic number of infinite product graphs

被引:41
|
作者
Fiala, Jiri [1 ,2 ]
Klavzar, Sandi [3 ]
Lidicky, Bernard [1 ,2 ]
机构
[1] Charles Univ Prague, Dept Appl Math, CR-11800 Prague, Czech Republic
[2] Charles Univ Prague, Inst Theoret Comp Sci ITI, CR-11800 Prague, Czech Republic
[3] Univ Ljubljana, Dept Math, Ljubljana 1000, Slovenia
关键词
D O I
10.1016/j.ejc.2008.09.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The packing chromatic number chi(rho)(G) of a graph G is the smallest integer k such that the vertex set V(G) can be partitioned into disjoint classes X(l) ..... X(k), where vertices in X(i) have pairwise distance greater than i. For the Cartesian product of a path and the two-dimensional square lattice it is proved that chi(rho)(Pm square Z(2)) = for any m >= 2, thus extending the result chi(rho)(Z(3)) = infinity of [A. Firibow, D.F. Rall, On the packing chromatic number of some lattices, Discrete Appl. Math. (submitted for publication) special issue LAGOS'07]. It is also proved that chi(rho)(Z(2)) >= 10 which improves the bound chi(rho)(Z(2)) >= 9 of [W. Goddard, S.M. Hedetnierni, S.T. Hedetniemi.J.M. Harris, D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008) 33-49]. Moreover, it is shown that chi(rho)(G square Z) >= infinity for any finite graph G. The infinite hexagonal lattice H is also considered and it is proved that chi(rho)(H) >= 7 and chi(rho)(P(m)square H) = infinity for m >= 6. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1101 / 1113
页数:13
相关论文
共 50 条
  • [1] An infinite family of subcubic graphs with unbounded packing chromatic number
    Bresar, Bostjan
    Ferme, Jasmina
    DISCRETE MATHEMATICS, 2018, 341 (08) : 2337 - 2342
  • [2] Graphs that are Critical for the Packing Chromatic Number
    Bresar, Bostjan
    Ferme, Jasmina
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (02) : 569 - 589
  • [3] Packing chromatic number of cubic graphs
    Balogh, Jozsef
    Kostochka, Alexandr
    Liu, Xujun
    DISCRETE MATHEMATICS, 2018, 341 (02) : 474 - 483
  • [4] On the packing chromatic number of Moore graphs
    Fresan-Figueroa, J.
    Gonzalez-Moreno, D.
    Olsen, M.
    DISCRETE APPLIED MATHEMATICS, 2021, 289 (289) : 185 - 193
  • [5] PACKING CHROMATIC NUMBER OF TRANSFORMATION GRAPHS
    Durgun, Derya D.
    Ozen Dortok, H. Busra
    THERMAL SCIENCE, 2019, 23 : S1991 - S1995
  • [6] Packing chromatic number of distance graphs
    Ekstein, Jan
    Holub, Premysl
    Lidicky, Bernard
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 518 - 524
  • [7] ON THE CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS
    DUFFUS, D
    SANDS, B
    WOODROW, RE
    JOURNAL OF GRAPH THEORY, 1985, 9 (04) : 487 - 495
  • [8] The chromatic number of infinite graphs - A survey
    Peter Komjath
    DISCRETE MATHEMATICS, 2011, 311 (15) : 1448 - 1450
  • [9] Packing Chromatic Number of Subdivisions of Cubic Graphs
    Balogh, Jozsef
    Kostochka, Alexandr
    Liu, Xujun
    GRAPHS AND COMBINATORICS, 2019, 35 (02) : 513 - 537
  • [10] Packing Chromatic Number of Subdivisions of Cubic Graphs
    József Balogh
    Alexandr Kostochka
    Xujun Liu
    Graphs and Combinatorics, 2019, 35 : 513 - 537