The packing chromatic number of infinite product graphs

被引:41
|
作者
Fiala, Jiri [1 ,2 ]
Klavzar, Sandi [3 ]
Lidicky, Bernard [1 ,2 ]
机构
[1] Charles Univ Prague, Dept Appl Math, CR-11800 Prague, Czech Republic
[2] Charles Univ Prague, Inst Theoret Comp Sci ITI, CR-11800 Prague, Czech Republic
[3] Univ Ljubljana, Dept Math, Ljubljana 1000, Slovenia
关键词
D O I
10.1016/j.ejc.2008.09.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The packing chromatic number chi(rho)(G) of a graph G is the smallest integer k such that the vertex set V(G) can be partitioned into disjoint classes X(l) ..... X(k), where vertices in X(i) have pairwise distance greater than i. For the Cartesian product of a path and the two-dimensional square lattice it is proved that chi(rho)(Pm square Z(2)) = for any m >= 2, thus extending the result chi(rho)(Z(3)) = infinity of [A. Firibow, D.F. Rall, On the packing chromatic number of some lattices, Discrete Appl. Math. (submitted for publication) special issue LAGOS'07]. It is also proved that chi(rho)(Z(2)) >= 10 which improves the bound chi(rho)(Z(2)) >= 9 of [W. Goddard, S.M. Hedetnierni, S.T. Hedetniemi.J.M. Harris, D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008) 33-49]. Moreover, it is shown that chi(rho)(G square Z) >= infinity for any finite graph G. The infinite hexagonal lattice H is also considered and it is proved that chi(rho)(H) >= 7 and chi(rho)(P(m)square H) = infinity for m >= 6. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1101 / 1113
页数:13
相关论文
共 50 条
  • [41] On local antimagic chromatic number of lexicographic product graphs
    G.-C. Lau
    W. C. Shiu
    Acta Mathematica Hungarica, 2023, 169 : 158 - 170
  • [42] ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT GRAPHS
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (1) : 158 - 170
  • [43] IMPROVED BOUNDS FOR THE CHROMATIC NUMBER OF THE LEXICOGRAPHIC PRODUCT OF GRAPHS
    KASCHEK, R
    KLAVZAR, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1994, 25 (12): : 1267 - 1274
  • [44] On the local antimagic chromatic number of the lexicographic product of graphs
    Lau, Gee-Choon
    Shiu, Wai Chee
    Kanthavadivel, Premalatha
    Zhang, Ruixue
    Movirichettiar, Nalliah
    DISCRETE MATHEMATICS LETTERS, 2023, 11 : 76 - 83
  • [45] A lower bound for the packing chromatic number of the Cartesian product of cycles
    Jacobs, Yoland
    Jonck, Elizabeth
    Joubert, Ernst J.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (07): : 1344 - 1357
  • [46] The packing chromatic number of the infinite square lattice is between 13 and 15
    Martin, Barnaby
    Raimondi, Franco
    Chen, Taolue
    Martin, Jos
    DISCRETE APPLIED MATHEMATICS, 2017, 225 : 136 - 142
  • [47] Packing chromatic number versus chromatic and clique number
    Bresar, Bostjan
    Klavzar, Sandi
    Rall, Douglas F.
    Wash, Kirsti
    AEQUATIONES MATHEMATICAE, 2018, 92 (03) : 497 - 513
  • [48] THE CHROMATIC NUMBER OF THE PRODUCT OF 2 ALEPH-CHROMATIC GRAPHS CAN BE COUNTABLE
    HAJNAL, A
    COMBINATORICA, 1985, 5 (02) : 137 - 139
  • [49] Packing chromatic number versus chromatic and clique number
    Boštjan Brešar
    Sandi Klavžar
    Douglas F. Rall
    Kirsti Wash
    Aequationes mathematicae, 2018, 92 : 497 - 513
  • [50] Packing Chromatic Number of Base-3 Sierpiński Graphs
    Boštjan Brešar
    Sandi Klavžar
    Douglas F. Rall
    Graphs and Combinatorics, 2016, 32 : 1313 - 1327