Packing chromatic number versus chromatic and clique number

被引:0
|
作者
Boštjan Brešar
Sandi Klavžar
Douglas F. Rall
Kirsti Wash
机构
[1] University of Maribor,Faculty of Natural Sciences and Mathematics
[2] Institute of Mathematics,Faculty of Mathematics and Physics
[3] Physics and Mechanics,Department of Mathematics
[4] University of Ljubljana,Department of Mathematics
[5] Furman University,undefined
[6] Western New England University,undefined
来源
Aequationes mathematicae | 2018年 / 92卷
关键词
Packing chromatic number; Chromatic number; Clique number; Independence number; Mycielskian; 05C70; 05C15; 05C12;
D O I
暂无
中图分类号
学科分类号
摘要
The packing chromatic number χρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\rho }(G)$$\end{document} of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_i$$\end{document}, i∈[k]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\in [k]$$\end{document}, where each Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_i$$\end{document} is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that ω(G)=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (G) = a$$\end{document}, χ(G)=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (G) = b$$\end{document}, and χρ(G)=c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\rho }(G) = c$$\end{document}. If so, we say that (a, b, c) is realizable. It is proved that b=c≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=c\ge 3$$\end{document} implies a=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=b$$\end{document}, and that triples (2,k,k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,k,k+1)$$\end{document} and (2,k,k+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,k,k+2)$$\end{document} are not realizable as soon as k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 4$$\end{document}. Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on χρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\rho }(G)$$\end{document} in terms of Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document} and α(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)$$\end{document} is also proved.
引用
收藏
页码:497 / 513
页数:16
相关论文
共 50 条
  • [1] Packing chromatic number versus chromatic and clique number
    Bresar, Bostjan
    Klavzar, Sandi
    Rall, Douglas F.
    Wash, Kirsti
    AEQUATIONES MATHEMATICAE, 2018, 92 (03) : 497 - 513
  • [2] CHROMATIC NUMBER VERSUS COCHROMATIC NUMBER IN GRAPHS WITH BOUNDED CLIQUE NUMBER
    ERDOS, P
    GIMBEL, J
    STRAIGHT, HJ
    EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (03) : 235 - 240
  • [3] On Graph Having Clique Number α,Chromatic Number α+1
    Xu Baogang(Dept.Math.Shandong University
    数学研究与评论, 1991, (03) : 400 - 400
  • [4] Tight Bounds on the Clique Chromatic Number
    Joret, Gwenael
    Micek, Piotr
    Reed, Bruce
    Smid, Michiel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [5] The packing chromatic number of hypercubes
    Torres, Pablo
    Valencia-Pabon, Mario
    DISCRETE APPLIED MATHEMATICS, 2015, 190 : 127 - 140
  • [6] The list chromatic number of graphs with small clique number
    Molloy, Michael
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 264 - 284
  • [7] Minimum Clique Number, Chromatic Number, and Ramsey Numbers
    Liu, Gaku
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [8] Fractional chromatic number and circular chromatic number for distance graphs with large clique size
    Liu, DDF
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2004, 47 (02) : 129 - 146
  • [9] Hardness of computing clique number and chromatic number for Cayley graphs
    Godsil, Chris
    Rooney, Brendan
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 62 : 147 - 166
  • [10] Forcing clique immersions through chromatic number
    Gauthier, Gregory
    Le, Tien-Nam
    Wollan, Paul
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 81 : 98 - 118