Packing chromatic number versus chromatic and clique number

被引:0
|
作者
Boštjan Brešar
Sandi Klavžar
Douglas F. Rall
Kirsti Wash
机构
[1] University of Maribor,Faculty of Natural Sciences and Mathematics
[2] Institute of Mathematics,Faculty of Mathematics and Physics
[3] Physics and Mechanics,Department of Mathematics
[4] University of Ljubljana,Department of Mathematics
[5] Furman University,undefined
[6] Western New England University,undefined
来源
Aequationes mathematicae | 2018年 / 92卷
关键词
Packing chromatic number; Chromatic number; Clique number; Independence number; Mycielskian; 05C70; 05C15; 05C12;
D O I
暂无
中图分类号
学科分类号
摘要
The packing chromatic number χρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\rho }(G)$$\end{document} of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_i$$\end{document}, i∈[k]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\in [k]$$\end{document}, where each Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_i$$\end{document} is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that ω(G)=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (G) = a$$\end{document}, χ(G)=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (G) = b$$\end{document}, and χρ(G)=c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\rho }(G) = c$$\end{document}. If so, we say that (a, b, c) is realizable. It is proved that b=c≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=c\ge 3$$\end{document} implies a=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=b$$\end{document}, and that triples (2,k,k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,k,k+1)$$\end{document} and (2,k,k+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,k,k+2)$$\end{document} are not realizable as soon as k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 4$$\end{document}. Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on χρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\rho }(G)$$\end{document} in terms of Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document} and α(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)$$\end{document} is also proved.
引用
收藏
页码:497 / 513
页数:16
相关论文
共 50 条
  • [31] A note on packing chromatic number of the square lattice
    Soukal, Roman
    Holub, Premysl
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [32] A note on the packing chromatic number of lexicographic products
    Bozovic, Dragana
    Peterin, Iztok
    DISCRETE APPLIED MATHEMATICS, 2021, 293 : 34 - 37
  • [33] On the fractional chromatic number, the chromatic number, and graph products
    Klavzar, S
    Yeh, HG
    DISCRETE MATHEMATICS, 2002, 247 (1-3) : 235 - 242
  • [34] Irredundance chromatic number and gamma chromatic number of trees
    Kalarkop, David Ashok
    Kaemawichanurat, Pawaton
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [35] Induced odd cycle packing number, independent sets, and chromatic number
    Dvorak, Zdenek
    Pekarek, Jakub
    JOURNAL OF GRAPH THEORY, 2023, 103 (03) : 502 - 516
  • [36] Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number
    Department of Computer Science, University of Texas at Austin, 1 University Station C0500, Austin
    TX
    78712, United States
    Theory Comput., 2007, (103-128):
  • [37] Perfect graphs of arbitrarily large clique-chromatic number
    Charbit, Pierre
    Penev, Irena
    Thomasse, Stephan
    Trotignon, Nicolas
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 456 - 464
  • [38] Fractional chromatic number and circular chromatic number for distance graphs with large clique size (vol 48, pg 329, 2005)
    Liu, DDF
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2005, 48 (04) : 329 - 330
  • [39] Graphs whose circular chromatic number equals the chromatic number
    Zhu, XD
    COMBINATORICA, 1999, 19 (01) : 139 - 149
  • [40] Packing chromatic number under local changes in a graph
    Bresar, Bostjan
    Klavzar, Sandi
    Rall, Douglas F.
    Washe, Kirsti
    DISCRETE MATHEMATICS, 2017, 340 (05) : 1110 - 1115