The packing chromatic number of hypercubes

被引:20
|
作者
Torres, Pablo [1 ,2 ]
Valencia-Pabon, Mario [3 ]
机构
[1] Univ Nacl Rosario, RA-2000 Rosario, Santa Fe, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Rosario, Santa Fe, Argentina
[3] Univ Paris 13, Sorbonne Paris Cite, LIPN, CNRS UMR7030, F-93430 Villetaneuse, France
关键词
Packing chromatic number; Upper bound; Hypercube graphs; HEXAGONAL LATTICE; DISTANCE GRAPHS; COLORINGS; PRODUCT;
D O I
10.1016/j.dam.2015.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The packing chromatic number chi(rho), (G) of a graph G is the smallest integer k needed to proper color the vertices of G in such a way that the distance in G between any two vertices having color i be at least i+1. Goddard et al. (2008) found an upper bound for the packing chromatic number of hypercubes Q(n). Moreover, they compute chi(rho), (Q(n)) for n <= 5 leaving as an open problem the remaining cases. In this paper, we obtain a better upper bound for chi(rho)(Q(n)) and we improve the lower bounds for chi(rho) (Q(n)) for 6 <= n <= 11. In particular we compute the exact value of chi(rho)(Q(n)) for 6 <= n <= 8. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 140
页数:14
相关论文
共 50 条
  • [1] Total chromatic number of folded hypercubes
    Chen, Meirun
    Guo, Xiaofeng
    Zhai, Shaohui
    [J]. ARS COMBINATORIA, 2013, 111 : 265 - 272
  • [2] Packing chromatic number versus chromatic and clique number
    Bresar, Bostjan
    Klavzar, Sandi
    Rall, Douglas F.
    Wash, Kirsti
    [J]. AEQUATIONES MATHEMATICAE, 2018, 92 (03) : 497 - 513
  • [3] Packing chromatic number versus chromatic and clique number
    Boštjan Brešar
    Sandi Klavžar
    Douglas F. Rall
    Kirsti Wash
    [J]. Aequationes mathematicae, 2018, 92 : 497 - 513
  • [4] On the packing chromatic number of Moore graphs
    Fresan-Figueroa, J.
    Gonzalez-Moreno, D.
    Olsen, M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 289 (289) : 185 - 193
  • [5] Graphs that are Critical for the Packing Chromatic Number
    Bresar, Bostjan
    Ferme, Jasmina
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (02) : 569 - 589
  • [6] On the packing chromatic number of some lattices
    Finbow, Arthur S.
    Rall, Douglas F.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (12) : 1224 - 1228
  • [7] Packing chromatic number of cubic graphs
    Balogh, Jozsef
    Kostochka, Alexandr
    Liu, Xujun
    [J]. DISCRETE MATHEMATICS, 2018, 341 (02) : 474 - 483
  • [8] PACKING CHROMATIC NUMBER OF TRANSFORMATION GRAPHS
    Durgun, Derya D.
    Ozen Dortok, H. Busra
    [J]. THERMAL SCIENCE, 2019, 23 : S1991 - S1995
  • [9] Packing chromatic number of distance graphs
    Ekstein, Jan
    Holub, Premysl
    Lidicky, Bernard
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 518 - 524
  • [10] THE S-PACKING CHROMATIC NUMBER OF A GRAPH
    Goddard, Wayne
    Xu, Honghai
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) : 795 - 806