Transition to Superfluid Turbulence

被引:0
|
作者
V. B. Eltsov
M. Krusius
G. E. Volovik
机构
[1] Helsinki University of Technology,Low Temperature Laboratory
[2] Kapitza Institute of Physical Problems,undefined
[3] Landau Institute for Theoretical Physics,undefined
来源
关键词
quantized vortex; vortex dynamics; superfluid turbulence; transition to turbulence; mutual friction; instability; 47.37; 67.40; 67.57;
D O I
暂无
中图分类号
学科分类号
摘要
Turbulence in superfluids depends crucially on the dissipative damping in vortex motion. This is observed in the B phase of superfluid 3He where the dynamics of quantized vortices changes radically in character as a function of temperature. An abrupt transition to turbulence is the most peculiar consequence. As distinct from viscous hydrodynamics, this transition to turbulence is not governed by the velocity-dependent Reynolds number, but by a velocity-independent dimensionless parameter 1/q which depends only on the temperature-dependent mutual friction—the dissipation which sets in when vortices move with respect to the normal excitations of the liquid. At large friction and small values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/q \lesssim 1$$\end{document} the dynamics is vortex number conserving, while at low friction and large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/q > rsim 1$$\end{document} vortices are easily destabilized and proliferate in number. A new measuring technique was employed to identify this hydrodynamic transition: the injection of a tight bundle of many small vortex loops in applied vortex-free flow at relatively high velocities. These vortices are ejected from a vortex sheet covering the AB interface when a two-phase sample of 3He-A and 3He-B is set in rotation and the interface becomes unstable at a critical rotation velocity, triggered by the superfluid Kelvin–Helmholtz instability.
引用
收藏
页码:89 / 106
页数:17
相关论文
共 50 条
  • [41] Investigation of intermittency in superfluid turbulence
    Salort, J.
    Chabaud, B.
    Leveque, E.
    Roche, P-E
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): STATISTICAL ASPECTS, MODELLING AND SIMULATIONS OF TURBULENCE, 2011, 318
  • [42] Introduction to superfluid vortices and turbulence
    Barenghi, CF
    QUANTIZED VORTEX DYNAMICS AND SUPERFLUID TURBULENCE, 2001, 571 : 3 - 14
  • [43] Fractal dimension of superfluid turbulence
    Kivotides, D
    Barenghi, CF
    Samuels, DC
    PHYSICAL REVIEW LETTERS, 2001, 87 (15) : 155301 - 155301
  • [44] Quantum signature of superfluid turbulence
    Kivotides, D
    Vassilicos, JC
    Barenghi, CF
    Khan, MAI
    Samuels, DC
    PHYSICAL REVIEW LETTERS, 2001, 87 (27) : 275302 - 1
  • [45] Nonlocality in homogeneous superfluid turbulence
    Dix, O. M.
    Zieve, R. J.
    PHYSICAL REVIEW B, 2014, 90 (14):
  • [46] An introduction to experiments on superfluid turbulence
    Donnelly, RJ
    QUANTIZED VORTEX DYNAMICS AND SUPERFLUID TURBULENCE, 2001, 571 : 17 - 35
  • [47] Shell model of superfluid turbulence
    Wacks, D. H.
    Barenghi, C. F.
    PHYSICAL REVIEW B, 2011, 84 (18)
  • [48] FREE DECAY OF SUPERFLUID TURBULENCE
    MILLIKEN, FP
    SCHWARZ, KW
    SMITH, CW
    PHYSICAL REVIEW LETTERS, 1982, 48 (17) : 1204 - 1207
  • [49] Local investigation of superfluid turbulence
    Maurer, J
    Tabeling, P
    EUROPHYSICS LETTERS, 1998, 43 (01): : 29 - 34
  • [50] TURBULENCE IN PURE SUPERFLUID FLOW
    ASHTON, RA
    OPATOWSKY, LB
    TOUGH, JT
    PHYSICAL REVIEW LETTERS, 1981, 46 (10) : 658 - 661