Transition to Superfluid Turbulence

被引:0
|
作者
V. B. Eltsov
M. Krusius
G. E. Volovik
机构
[1] Helsinki University of Technology,Low Temperature Laboratory
[2] Kapitza Institute of Physical Problems,undefined
[3] Landau Institute for Theoretical Physics,undefined
来源
关键词
quantized vortex; vortex dynamics; superfluid turbulence; transition to turbulence; mutual friction; instability; 47.37; 67.40; 67.57;
D O I
暂无
中图分类号
学科分类号
摘要
Turbulence in superfluids depends crucially on the dissipative damping in vortex motion. This is observed in the B phase of superfluid 3He where the dynamics of quantized vortices changes radically in character as a function of temperature. An abrupt transition to turbulence is the most peculiar consequence. As distinct from viscous hydrodynamics, this transition to turbulence is not governed by the velocity-dependent Reynolds number, but by a velocity-independent dimensionless parameter 1/q which depends only on the temperature-dependent mutual friction—the dissipation which sets in when vortices move with respect to the normal excitations of the liquid. At large friction and small values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/q \lesssim 1$$\end{document} the dynamics is vortex number conserving, while at low friction and large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/q > rsim 1$$\end{document} vortices are easily destabilized and proliferate in number. A new measuring technique was employed to identify this hydrodynamic transition: the injection of a tight bundle of many small vortex loops in applied vortex-free flow at relatively high velocities. These vortices are ejected from a vortex sheet covering the AB interface when a two-phase sample of 3He-A and 3He-B is set in rotation and the interface becomes unstable at a critical rotation velocity, triggered by the superfluid Kelvin–Helmholtz instability.
引用
收藏
页码:89 / 106
页数:17
相关论文
共 50 条
  • [31] Geometry and Topology of Superfluid Turbulence
    D. R. Poole
    H. Scoffield
    C. F. Barenghi
    D. C. Samuels
    Journal of Low Temperature Physics, 2003, 132 : 97 - 117
  • [32] Scale invariance and superfluid turbulence
    Sen, Siddhartha
    Ray, Koushik
    NUCLEAR PHYSICS B, 2013, 876 (02) : 637 - 650
  • [33] Enhancement of Intermittency in Superfluid Turbulence
    Boue, Laurent
    L'vov, Victor
    Pomyalov, Anna
    Procaccia, Itamar
    PHYSICAL REVIEW LETTERS, 2013, 110 (01)
  • [34] Superfluid turbulence at zero temperature
    Samuels, DC
    PHYSICA B, 2000, 284 (284): : 73 - 74
  • [35] INFLUENCE OF ROTATION ON SUPERFLUID TURBULENCE
    CHENG, DK
    BROOKS, JS
    DONNELLY, RJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (04): : 452 - &
  • [36] TRANSIENT EFFECTS IN SUPERFLUID TURBULENCE
    SLEGTENHORST, RP
    MAREES, G
    VANBEELEN, H
    PHYSICA B & C, 1982, 113 (03): : 367 - 379
  • [37] GEOMETRICAL SCALING OF SUPERFLUID TURBULENCE
    HENBERGER, JD
    LADNER, DR
    TOUGH, JT
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 622 - 623
  • [38] Knots and unknots in superfluid turbulence
    Barenghi, Carlo F.
    MILAN JOURNAL OF MATHEMATICS, 2007, 75 (01) : 177 - 196
  • [39] Velocity spectra of superfluid turbulence
    Kivotides, D
    Vassilicos, CJ
    Samuels, DC
    Barenghi, CF
    EUROPHYSICS LETTERS, 2002, 57 (06): : 845 - 851
  • [40] Shell Models of Superfluid Turbulence
    Wacks, Daniel H.
    Barenghi, Carlo F.
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): REACTING, COMPRESSIBLE, MULTI-PHASE AND CRYOGENIC FLOWS, 2011, 318