Transition to Superfluid Turbulence

被引:0
|
作者
V. B. Eltsov
M. Krusius
G. E. Volovik
机构
[1] Helsinki University of Technology,Low Temperature Laboratory
[2] Kapitza Institute of Physical Problems,undefined
[3] Landau Institute for Theoretical Physics,undefined
来源
关键词
quantized vortex; vortex dynamics; superfluid turbulence; transition to turbulence; mutual friction; instability; 47.37; 67.40; 67.57;
D O I
暂无
中图分类号
学科分类号
摘要
Turbulence in superfluids depends crucially on the dissipative damping in vortex motion. This is observed in the B phase of superfluid 3He where the dynamics of quantized vortices changes radically in character as a function of temperature. An abrupt transition to turbulence is the most peculiar consequence. As distinct from viscous hydrodynamics, this transition to turbulence is not governed by the velocity-dependent Reynolds number, but by a velocity-independent dimensionless parameter 1/q which depends only on the temperature-dependent mutual friction—the dissipation which sets in when vortices move with respect to the normal excitations of the liquid. At large friction and small values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/q \lesssim 1$$\end{document} the dynamics is vortex number conserving, while at low friction and large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/q > rsim 1$$\end{document} vortices are easily destabilized and proliferate in number. A new measuring technique was employed to identify this hydrodynamic transition: the injection of a tight bundle of many small vortex loops in applied vortex-free flow at relatively high velocities. These vortices are ejected from a vortex sheet covering the AB interface when a two-phase sample of 3He-A and 3He-B is set in rotation and the interface becomes unstable at a critical rotation velocity, triggered by the superfluid Kelvin–Helmholtz instability.
引用
收藏
页码:89 / 106
页数:17
相关论文
共 50 条
  • [21] TRANSITION TO SUPERFLUID TURBULENCE IN 2-FLUID FLOW OF HE-II
    COURTS, SS
    TOUGH, JT
    PHYSICAL REVIEW B, 1988, 38 (01): : 74 - 80
  • [22] Transition to Quantum Turbulence Generated by an Oscillating Object in Superfluid 4He
    Yano, H.
    Nago, Y.
    Goto, R.
    Obara, K.
    Ishikawa, O.
    Hata, T.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 3: QUANTUM GASES LIQUIDS AND SOLIDS, 2009, 150
  • [23] An introduction to the theory of superfluid turbulence
    Vinen, WF
    QUANTIZED VORTEX DYNAMICS AND SUPERFLUID TURBULENCE, 2001, 571 : 149 - 161
  • [24] Superfluid neutron star turbulence
    Andersson, N.
    Sidery, T.
    Comer, G. L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 381 (02) : 747 - 756
  • [25] Macroscopic dynamics of superfluid turbulence
    Nemirovskii, S.K.
    Fizika Nizkikh Temperatur, 2019, 45 (08): : 986 - 994
  • [26] Knots and Unknots in Superfluid Turbulence
    Carlo F. Barenghi
    Milan Journal of Mathematics, 2007, 75 : 177 - 196
  • [27] Quantum turbulence in superfluid helium
    Efimov, V. B.
    PHYSICS-USPEKHI, 2023, 66 (01) : 59 - 89
  • [28] Geometry and topology of superfluid turbulence
    Poole, DR
    Scoffield, H
    Barenghi, CF
    Samuels, DC
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2003, 132 (1-2) : 97 - 117
  • [29] Macroscopic dynamics of superfluid turbulence
    Nemirovskii, S. K.
    LOW TEMPERATURE PHYSICS, 2019, 45 (08) : 841 - 847
  • [30] SUPERFLUID TURBULENCE IN LARGE TUBES
    MARTIN, KP
    PIOTROWSKI, C
    TOUGH, JT
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 624 - 624