Note on Locally Conformal Kähler Surfaces

被引:0
|
作者
Yoshinobu Kamishima
机构
[1] Tokyo Metropolitan University,Department of Mathematics
来源
Geometriae Dedicata | 2001年 / 84卷
关键词
geometric complex surfaces; aspherical solvmanifolds; locally conformal Kähler structure; Inoue surfaces;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this note is to show that the complex two-dimensional locally conformal Kähler solvmanifold obtained by L. de Andres, Fernandez, Mencia and Cordero is holomorphically homothetic to the Inoue surface equipped with the locally conformal Kähler structure constructed by Tricerri. In order to prove it, we collect several facts related to the existence of locally conformal Kähler structure on compact complex surfaces.
引用
收藏
页码:115 / 124
页数:9
相关论文
共 50 条
  • [31] A note on almost kähler manifolds
    Domenico Catalano
    Filip Defever
    Ryszard Deszcz
    Marian Hotloś
    Zbigniew Olszak
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1999, 69 : 59 - 65
  • [32] A note on Kähler–Ricci flow
    Chengjie Yu
    Mathematische Zeitschrift, 2012, 272 : 191 - 201
  • [33] Locally homogeneous nearly Kähler manifolds
    V. Cortés
    J. J. Vásquez
    Annals of Global Analysis and Geometry, 2015, 48 : 269 - 294
  • [34] On toric locally conformally Kähler manifolds
    Farid Madani
    Andrei Moroianu
    Mihaela Pilca
    Annals of Global Analysis and Geometry, 2017, 51 : 401 - 417
  • [35] Transformations of locally conformally Kähler manifolds
    Andrei Moroianu
    Liviu Ornea
    manuscripta mathematica, 2009, 130 : 93 - 100
  • [36] Extremal Kähler metrics on Hirzebruch surfaces which are locally conformally equivalent to Einstein metrics
    Andrew D. Hwang
    Santiago R. Simanca
    Mathematische Annalen, 1997, 309 : 97 - 106
  • [37] Conformal product structures on compact Kähler manifolds
    Moroianu, Andrei
    Pilca, Mihaela
    ADVANCES IN MATHEMATICS, 2025, 467
  • [38] Note on Dirac–Kähler massless fields
    S. I. Kruglov
    The European Physical Journal C, 2010, 68 : 337 - 343
  • [39] Isometric immersions of locally conformally Kähler manifolds
    Daniele Angella
    Michela Zedda
    Annals of Global Analysis and Geometry, 2019, 56 : 37 - 55
  • [40] On harmonic symmetries for locally conformally Kähler manifolds
    Teng Huang
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2241 - 2259