Note on Locally Conformal Kähler Surfaces

被引:0
|
作者
Yoshinobu Kamishima
机构
[1] Tokyo Metropolitan University,Department of Mathematics
来源
Geometriae Dedicata | 2001年 / 84卷
关键词
geometric complex surfaces; aspherical solvmanifolds; locally conformal Kähler structure; Inoue surfaces;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this note is to show that the complex two-dimensional locally conformal Kähler solvmanifold obtained by L. de Andres, Fernandez, Mencia and Cordero is holomorphically homothetic to the Inoue surface equipped with the locally conformal Kähler structure constructed by Tricerri. In order to prove it, we collect several facts related to the existence of locally conformal Kähler structure on compact complex surfaces.
引用
收藏
页码:115 / 124
页数:9
相关论文
共 50 条
  • [21] A note on almost Kähler, nearly Kähler submersions
    Falcitelli M.
    Pastore A.M.
    Journal of Geometry, 2000, 69 (1-2) : 79 - 87
  • [22] Affine Surfaces Which are Kähler, Para-Kähler, or Nilpotent Kähler
    E. Calviño-Louzao
    E. García-Río
    P. Gilkey
    I. Gutiérrez-Rodríguez
    R. Vázquez-Lorenzo
    Results in Mathematics, 2018, 73
  • [23] Locally conformal Kähler structures on compact nilmanifolds with left-invariant complex structures
    Hiroshi Sawai
    Geometriae Dedicata, 2007, 125 : 93 - 101
  • [24] Locally conformally flat Kähler and para-Kähler manifolds
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2021, 59 : 483 - 500
  • [25] GENERALIZED CHEN INEQUALITY FOR CR-WARPED PRODUCTS OF LOCALLY CONFORMAL KÄHLER MANIFOLDS
    Kaur, Harmandeep
    Shanker, Gauree
    Kaur, Ramandeep
    Mustafa, Abdulqader
    HONAM MATHEMATICAL JOURNAL, 2024, 46 (01): : 47 - 59
  • [26] On line bundles arising from the LCK structure over locally conformal Kähler solvmanifolds
    Yamada, Takumi
    COMPLEX MANIFOLDS, 2024, 11 (01):
  • [27] Kähler Finsler metrics and conformal deformations
    Bin Chen
    Yibing Shen
    Lili Zhao
    Israel Journal of Mathematics, 2022, 248 : 355 - 382
  • [28] The Map Between Conformal Hypercomplex/ Hyper-Kähler and Quaternionic(-Kähler) Geometry
    Eric Bergshoeff
    Sorin Cucu
    Tim de Wit
    Jos Gheerardyn
    Stefan Vandoren
    Antoine Van Proeyen
    Communications in Mathematical Physics, 2006, 262 : 411 - 457
  • [29] The Map Between Conformal Hypercomplex/Hyper-Kähler and Quaternionic(-Kähler) Geometry
    Eric Bergshoeff
    Stefan Vandoren
    Antoine Van Proeyen
    Communications in Mathematical Physics, 2007, 274 : 553 - 553
  • [30] A note on special Kähler manifolds
    Zhiqin Lu
    Mathematische Annalen, 1999, 313 : 711 - 713