Boundedness of hyperbolic components of Newton maps

被引:0
|
作者
Hongming Nie
Kevin M. Pilgrim
机构
[1] The Hebrew University of Jerusalem Givat Ram,Einstein Institute of Mathematics
[2] Indiana University,Department of Mathematics
来源
Israel Journal of Mathematics | 2020年 / 238卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded.
引用
收藏
页码:837 / 869
页数:32
相关论文
共 50 条
  • [1] Boundedness of hyperbolic components of Newton maps
    Nie, Hongming
    Pilgrim, Kevin M.
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (02) : 837 - 869
  • [2] Perturbations of graphs for Newton maps I: bounded hyperbolic components
    Gao, Yan
    Nie, Hongming
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (09) : 2997 - 3025
  • [3] Boundedness of Fatou Components of Holomorphic Maps
    Chunlei Cao
    Yuefei Wang
    Journal of Dynamics and Differential Equations, 2004, 16 (2) : 377 - 384
  • [4] HYPERBOLIC COMPONENTS OF McMULLEN MAPS
    Qiu, Weiyuan
    Roesch, Pascale
    Wang, Xiaoguang
    Yin, Yongcheng
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2015, 48 (03): : 703 - 737
  • [5] Bounded hyperbolic components of quadratic rational maps
    Epstein, AL
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 727 - 748
  • [6] BOUNDED HYPERBOLIC COMPONENTS OF BICRITICAL RATIONAL MAPS
    Nie, Hongming
    Pilgrim, Kevin M.
    JOURNAL OF MODERN DYNAMICS, 2022, 18 : 533 - 553
  • [7] SUBHYPERBOLIC RATIONAL MAPS ON BOUNDARIES OF HYPERBOLIC COMPONENTS
    Gao, Yan
    Yang, Luxian
    Zeng, Jinsong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (01) : 319 - 326
  • [8] Hyperbolic components of rational maps: Quantitative equidistribution and counting
    Gauthier, Thomas
    Okuyama, Yusuke
    Vigny, Gabriel
    COMMENTARII MATHEMATICI HELVETICI, 2019, 94 (02) : 347 - 398
  • [9] COMPONENTS OF DEGREE-2 HYPERBOLIC RATIONAL MAPS
    REES, M
    INVENTIONES MATHEMATICAE, 1990, 100 (02) : 357 - 382
  • [10] SEMI-HYPERBOLIC RATIONAL MAPS AND SIZE OF FATOU COMPONENTS
    Ntalampekos, Dimitrios
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 425 - 446