HYPERBOLIC COMPONENTS OF McMULLEN MAPS

被引:1
|
作者
Qiu, Weiyuan [1 ]
Roesch, Pascale [2 ]
Wang, Xiaoguang [3 ]
Yin, Yongcheng [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Univ Aix Marseille, CMI, Technopole Chateau Gombert, F-13453 Marseille 13, France
[3] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2015年 / 48卷 / 03期
关键词
JULIA; DYNAMICS; RIGIDITY; DOMAIN; PROOF; SETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we completely settle a question raised by B. Devaney. We prove that all the hyperbolic components are Jordan domains in the family of rational maps of McMullen type. Moreover, we give a precise description of all the rational maps on the outer boundary. It follows that the cusps are dense on the outer boundary.
引用
收藏
页码:703 / 737
页数:35
相关论文
共 50 条
  • [1] Escape components of McMullen maps
    Qiu, Weiyuan
    Roesch, Pacale
    Wang, Yueyang
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (11) : 3745 - 3775
  • [2] Dynamics of McMullen maps
    Qiu, Weiyuan
    Wang, Xiaoguang
    Yin, Yongcheng
    ADVANCES IN MATHEMATICS, 2012, 229 (04) : 2525 - 2577
  • [3] Boundedness of hyperbolic components of Newton maps
    Hongming Nie
    Kevin M. Pilgrim
    Israel Journal of Mathematics, 2020, 238 : 837 - 869
  • [4] Boundedness of hyperbolic components of Newton maps
    Nie, Hongming
    Pilgrim, Kevin M.
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (02) : 837 - 869
  • [5] On the dynamics of generalized McMullen maps
    Xiao, Yingqing
    Qiu, Weiyuan
    Yin, Yongcheng
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 2093 - 2112
  • [6] Bounded hyperbolic components of quadratic rational maps
    Epstein, AL
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 727 - 748
  • [7] BOUNDED HYPERBOLIC COMPONENTS OF BICRITICAL RATIONAL MAPS
    Nie, Hongming
    Pilgrim, Kevin M.
    JOURNAL OF MODERN DYNAMICS, 2022, 18 : 533 - 553
  • [8] SUBHYPERBOLIC RATIONAL MAPS ON BOUNDARIES OF HYPERBOLIC COMPONENTS
    Gao, Yan
    Yang, Luxian
    Zeng, Jinsong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (01) : 319 - 326
  • [9] Dynamics,topology and bifurcations of McMullen maps
    WANG Xiao-guang
    YIN Yong-cheng
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2013, 28 (04) : 494 - 504
  • [10] Dynamics, topology and bifurcations of McMullen maps
    Wang Xiao-guang
    Yin Yong-cheng
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (04) : 494 - 504