HYPERBOLIC COMPONENTS OF McMULLEN MAPS

被引:1
|
作者
Qiu, Weiyuan [1 ]
Roesch, Pascale [2 ]
Wang, Xiaoguang [3 ]
Yin, Yongcheng [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Univ Aix Marseille, CMI, Technopole Chateau Gombert, F-13453 Marseille 13, France
[3] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2015年 / 48卷 / 03期
关键词
JULIA; DYNAMICS; RIGIDITY; DOMAIN; PROOF; SETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we completely settle a question raised by B. Devaney. We prove that all the hyperbolic components are Jordan domains in the family of rational maps of McMullen type. Moreover, we give a precise description of all the rational maps on the outer boundary. It follows that the cusps are dense on the outer boundary.
引用
收藏
页码:703 / 737
页数:35
相关论文
共 50 条
  • [21] Hausdorff dimension of the boundary of the immediate basin of infinity of McMullen maps
    XIAOGUANG WANG
    FEI YANG
    Proceedings - Mathematical Sciences, 2014, 124 : 551 - 562
  • [22] Hausdorff dimension of the boundary of the immediate basin of infinity of McMullen maps
    Wang, Xiaoguang
    Yang, Fei
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (04): : 551 - 562
  • [23] HYPERBOLIC HARMONIC MAPS
    CHOQUETBRUHAT, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (04): : 109 - 113
  • [24] Hyperbolic components
    Milnor, John
    CONFORMAL DYNAMICS AND HYPERBOLIC GEOMETRY, 2012, 573 : 183 - 232
  • [25] The Boundedness Locus and Baby Mandelbrot Sets for Some Generalized McMullen Maps
    Boyd, Suzanne
    Mitchell, Alexander J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (09):
  • [26] Asymptotics of the Hausdorff dimensions of the Julia sets of McMullen maps with error bounds
    Lu, Hongbin
    Qiu, Weiyuan
    Yang, Fei
    NONLINEARITY, 2022, 35 (01) : 787 - 816
  • [27] Hyperbolic dimension for interval maps
    Dobbs, Neil
    NONLINEARITY, 2006, 19 (12) : 2877 - 2894
  • [28] A characterization of hyperbolic rational maps
    Cui, Guizhen
    Tan, Lei
    INVENTIONES MATHEMATICAE, 2011, 183 (03) : 451 - 516
  • [29] Hyperbolic Equivariants of Rational Maps
    Jacobs, Kenneth
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (01) : 1 - 53
  • [30] HYPERBOLIC SETS FOR TWIST MAPS
    GOROFF, DL
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1985, 5 (JUN) : 337 - 339