Boundedness of hyperbolic components of Newton maps

被引:0
|
作者
Hongming Nie
Kevin M. Pilgrim
机构
[1] The Hebrew University of Jerusalem Givat Ram,Einstein Institute of Mathematics
[2] Indiana University,Department of Mathematics
来源
Israel Journal of Mathematics | 2020年 / 238卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded.
引用
收藏
页码:837 / 869
页数:32
相关论文
共 50 条
  • [41] Boundedness of the period maps and global Torelli theorem
    KeFeng Liu
    Yang Shen
    Science China Mathematics, 2017, 60 : 1029 - 1046
  • [42] Boundedness of the period maps and global Torelli theorem
    LIU KeFeng
    SHEN Yang
    Science China(Mathematics), 2017, 60 (06) : 1029 - 1046
  • [43] Boundedness of the period maps and global Torelli theorem
    Liu, KeFeng
    Shen, Yang
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (06) : 1029 - 1046
  • [44] Boundedness of planar jump discontinuities for homogeneous hyperbolic systems
    Rauch, Jeffrey
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2021, 18 (03) : 511 - 538
  • [45] Boundedness of pluricanonical maps of varieties of general type
    Christopher D. Hacon
    James McKernan
    Inventiones mathematicae, 2006, 166 : 1 - 25
  • [46] Counting hyperbolic components
    Kiwi, Jan
    Rees, Mary
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 88 : 669 - 698
  • [47] Newton maps as matings of cubic polynomials
    Aspenberg, Magnus
    Roesch, Pascale
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 113 : 77 - 112
  • [48] Branched coverings and cubic Newton maps
    Tan, L
    FUNDAMENTA MATHEMATICAE, 1997, 154 (03) : 207 - 260
  • [49] Dynamics of the Newton maps of rational functions
    Roger W. Barnard
    Jerry Dwyer
    Erin Williams
    G. Brock Williams
    The Journal of Analysis, 2021, 29 : 1055 - 1070
  • [50] Moduli space of cubic Newton maps
    Roesch, Pascale
    Wang, Xiaoguang
    Yin, Yongcheng
    ADVANCES IN MATHEMATICS, 2017, 322 : 1 - 59