Boundedness of hyperbolic components of Newton maps

被引:0
|
作者
Hongming Nie
Kevin M. Pilgrim
机构
[1] The Hebrew University of Jerusalem Givat Ram,Einstein Institute of Mathematics
[2] Indiana University,Department of Mathematics
来源
Israel Journal of Mathematics | 2020年 / 238卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded.
引用
收藏
页码:837 / 869
页数:32
相关论文
共 50 条
  • [31] Hyperbolic dimension for interval maps
    Dobbs, Neil
    NONLINEARITY, 2006, 19 (12) : 2877 - 2894
  • [32] A characterization of hyperbolic rational maps
    Cui, Guizhen
    Tan, Lei
    INVENTIONES MATHEMATICAE, 2011, 183 (03) : 451 - 516
  • [33] Hyperbolic Equivariants of Rational Maps
    Jacobs, Kenneth
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (01) : 1 - 53
  • [34] HYPERBOLIC SETS FOR TWIST MAPS
    GOROFF, DL
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1985, 5 (JUN) : 337 - 339
  • [35] Stable maps and hyperbolic links
    Furutani, Ryoga
    Koda, Yuya
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2023, 31 (06) : 1405 - 1432
  • [36] HYPERBOLIC SETS FOR TWIST MAPS
    GOROFF, DL
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1985, 5 : 337 - 339
  • [37] A characterization of hyperbolic rational maps
    Guizhen Cui
    Lei Tan
    Inventiones mathematicae, 2011, 183 : 451 - 516
  • [38] Singularities of hyperbolic Gauss maps
    Izumiya, S
    Pei, DH
    Sano, T
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 86 : 485 - 512
  • [39] Boundedness of pluricanonical maps of varieties of general type
    Hacon, Christopher D.
    McKernan, James
    INVENTIONES MATHEMATICAE, 2006, 166 (01) : 1 - 25
  • [40] Uniform boundedness principles for Sobolev maps into manifolds
    Monteil, Antonin
    Van Schaftingen, Jean
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (02): : 417 - 449