Semi-Analytical Estimates for the Orbital Stability of Earth’s Satellites

被引:0
|
作者
Irene De Blasi
Alessandra Celletti
Christos Efthymiopoulos
机构
[1] University of Torino,Department of Mathematics
[2] University of Roma Tor Vergata,Department of Mathematics
[3] University of Padova,Department of Mathematics
来源
关键词
Stability; Normal forms; Orbital lifetime; Satellite dynamics; Space debris; 70F15; 37N05; 34C60;
D O I
暂无
中图分类号
学科分类号
摘要
Normal form stability estimates are a basic tool of Celestial Mechanics for characterizing the long-term stability of the orbits of natural and artificial bodies. Using high-order normal form constructions, we provide three different estimates for the orbital stability of point-mass satellites orbiting around the Earth. (i) We demonstrate the long-term stability of the semimajor axis within the framework of the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document} problem, by a normal form construction eliminating the fast angle in the corresponding Hamiltonian and obtaining HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document}. (ii) We demonstrate the stability of the eccentricity and inclination in a secular Hamiltonian model including lunisolar perturbations (the ‘geolunisolar’ Hamiltonian Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document}), after a suitable reduction of the Hamiltonian to the Laplace plane. (iii) We numerically examine the convexity and steepness properties of the integrable part of the secular Hamiltonian in both the HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document} and Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document} models, which reflect necessary conditions for the holding of Nekhoroshev’s theorem on the exponential stability of the orbits. We find that the HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document} model is non-convex, but satisfies a ‘three-jet’ condition, while the Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document} model restores quasi-convexity by adding lunisolar terms in the Hamiltonian’s integrable part.
引用
收藏
相关论文
共 50 条
  • [1] Semi-Analytical Estimates for the Orbital Stability of Earth's Satellites
    De Blasi, Irene
    Celletti, Alessandra
    Efthymiopoulos, Christos
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (06)
  • [2] Nekhoroshev estimates for the orbital stability of Earth’s satellites
    Alessandra Celletti
    Irene De Blasi
    Christos Efthymiopoulos
    [J]. Celestial Mechanics and Dynamical Astronomy, 2023, 135
  • [3] Nekhoroshev estimates for the orbital stability of Earth's satellites
    Celletti, Alessandra
    De Blasi, Irene
    Efthymiopoulos, Christos
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (02):
  • [4] Semi-analytical estimates for the chaotic diffusion in the Second Fundamental Model of Resonance. Application to Earth's navigation satellites
    Legnaro, Edoardo
    Efthymiopoulos, Christos
    Harsoula, Maria
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2023, 456
  • [5] A Semi-Analytical Method for Periodic Earth Coverage Satellites Optimization
    Chen, Xiaoyu
    Dai, Guangming
    Reinelt, Gerhard
    Wang, Maocai
    [J]. IEEE COMMUNICATIONS LETTERS, 2018, 22 (03) : 534 - 537
  • [6] A SEMI-ANALYTICAL APPROACH TO STUDY RESONANCES EFFECTS ON THE ORBITAL MOTION OF ARTIFICIAL SATELLITES
    Vilhena de Moraes, R.
    Sampaio, J. C.
    da Silva Fernandes, S.
    Formiga, J. K.
    [J]. SPACEFLIGHT MECHANICS 2013, PTS I-IV, 2013, 148 : 2773 - 2786
  • [7] A semi-analytical model of the Galilean satellites' dynamics
    Lari, Giacomo
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (08):
  • [8] Semi-analytical study of the rotational motion stability of artificial satellites using quaternions
    dos Santos, Josue C.
    Zanardi, Maria Cecilia
    Matos, Nicholas
    [J]. XVI BRAZILIAN COLLOQUIUM ON ORBITAL DYNAMICS, 2013, 465
  • [9] A semi-analytical model of the Galilean satellites’ dynamics
    Giacomo Lari
    [J]. Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [10] ESAPHO - A SEMI-ANALYTICAL THEORY FOR THE ORBITAL MOTION OF PHOBOS
    CHAPRONTTOUZE, M
    [J]. ASTRONOMY & ASTROPHYSICS, 1988, 200 (1-2) : 255 - 268