Semi-Analytical Estimates for the Orbital Stability of Earth’s Satellites

被引:0
|
作者
Irene De Blasi
Alessandra Celletti
Christos Efthymiopoulos
机构
[1] University of Torino,Department of Mathematics
[2] University of Roma Tor Vergata,Department of Mathematics
[3] University of Padova,Department of Mathematics
来源
关键词
Stability; Normal forms; Orbital lifetime; Satellite dynamics; Space debris; 70F15; 37N05; 34C60;
D O I
暂无
中图分类号
学科分类号
摘要
Normal form stability estimates are a basic tool of Celestial Mechanics for characterizing the long-term stability of the orbits of natural and artificial bodies. Using high-order normal form constructions, we provide three different estimates for the orbital stability of point-mass satellites orbiting around the Earth. (i) We demonstrate the long-term stability of the semimajor axis within the framework of the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document} problem, by a normal form construction eliminating the fast angle in the corresponding Hamiltonian and obtaining HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document}. (ii) We demonstrate the stability of the eccentricity and inclination in a secular Hamiltonian model including lunisolar perturbations (the ‘geolunisolar’ Hamiltonian Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document}), after a suitable reduction of the Hamiltonian to the Laplace plane. (iii) We numerically examine the convexity and steepness properties of the integrable part of the secular Hamiltonian in both the HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document} and Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document} models, which reflect necessary conditions for the holding of Nekhoroshev’s theorem on the exponential stability of the orbits. We find that the HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document} model is non-convex, but satisfies a ‘three-jet’ condition, while the Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document} model restores quasi-convexity by adding lunisolar terms in the Hamiltonian’s integrable part.
引用
收藏
相关论文
共 50 条
  • [1] Semi-Analytical Estimates for the Orbital Stability of Earth's Satellites
    De Blasi, Irene
    Celletti, Alessandra
    Efthymiopoulos, Christos
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (06)
  • [2] Nekhoroshev estimates for the orbital stability of Earth’s satellites
    Alessandra Celletti
    Irene De Blasi
    Christos Efthymiopoulos
    Celestial Mechanics and Dynamical Astronomy, 2023, 135
  • [3] Nekhoroshev estimates for the orbital stability of Earth's satellites
    Celletti, Alessandra
    De Blasi, Irene
    Efthymiopoulos, Christos
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (02):
  • [4] Semi-analytical estimates for the chaotic diffusion in the Second Fundamental Model of Resonance. Application to Earth's navigation satellites
    Legnaro, Edoardo
    Efthymiopoulos, Christos
    Harsoula, Maria
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 456
  • [5] A Semi-Analytical Method for Periodic Earth Coverage Satellites Optimization
    Chen, Xiaoyu
    Dai, Guangming
    Reinelt, Gerhard
    Wang, Maocai
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (03) : 534 - 537
  • [6] A SEMI-ANALYTICAL APPROACH TO STUDY RESONANCES EFFECTS ON THE ORBITAL MOTION OF ARTIFICIAL SATELLITES
    Vilhena de Moraes, R.
    Sampaio, J. C.
    da Silva Fernandes, S.
    Formiga, J. K.
    SPACEFLIGHT MECHANICS 2013, PTS I-IV, 2013, 148 : 2773 - 2786
  • [7] A semi-analytical model of the Galilean satellites' dynamics
    Lari, Giacomo
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (08):
  • [8] Semi-analytical study of the rotational motion stability of artificial satellites using quaternions
    dos Santos, Josue C.
    Zanardi, Maria Cecilia
    Matos, Nicholas
    XVI BRAZILIAN COLLOQUIUM ON ORBITAL DYNAMICS, 2013, 465
  • [9] A semi-analytical model of the Galilean satellites’ dynamics
    Giacomo Lari
    Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [10] Semi-analytical Method for Rapid Estimation of Orbital Uncertainty
    Yu Y.
    Yue C.
    Li H.
    Chen X.
    Liu P.
    Yuhang Xuebao/Journal of Astronautics, 2024, 45 (03): : 399 - 408