Semi-Analytical Estimates for the Orbital Stability of Earth’s Satellites

被引:0
|
作者
Irene De Blasi
Alessandra Celletti
Christos Efthymiopoulos
机构
[1] University of Torino,Department of Mathematics
[2] University of Roma Tor Vergata,Department of Mathematics
[3] University of Padova,Department of Mathematics
来源
关键词
Stability; Normal forms; Orbital lifetime; Satellite dynamics; Space debris; 70F15; 37N05; 34C60;
D O I
暂无
中图分类号
学科分类号
摘要
Normal form stability estimates are a basic tool of Celestial Mechanics for characterizing the long-term stability of the orbits of natural and artificial bodies. Using high-order normal form constructions, we provide three different estimates for the orbital stability of point-mass satellites orbiting around the Earth. (i) We demonstrate the long-term stability of the semimajor axis within the framework of the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document} problem, by a normal form construction eliminating the fast angle in the corresponding Hamiltonian and obtaining HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document}. (ii) We demonstrate the stability of the eccentricity and inclination in a secular Hamiltonian model including lunisolar perturbations (the ‘geolunisolar’ Hamiltonian Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document}), after a suitable reduction of the Hamiltonian to the Laplace plane. (iii) We numerically examine the convexity and steepness properties of the integrable part of the secular Hamiltonian in both the HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document} and Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document} models, which reflect necessary conditions for the holding of Nekhoroshev’s theorem on the exponential stability of the orbits. We find that the HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document} model is non-convex, but satisfies a ‘three-jet’ condition, while the Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document} model restores quasi-convexity by adding lunisolar terms in the Hamiltonian’s integrable part.
引用
收藏
相关论文
共 50 条
  • [41] A semi-analytical model for linear stability analysis of rectangular natural circulation loops
    Nadella, Saikrishna
    Srivastava, Abhishek Kumar
    Maheshwari, Naresh Kumar
    [J]. CHEMICAL ENGINEERING SCIENCE, 2018, 192 : 892 - 905
  • [42] Semi-analytical solutions for the effect of well shut-down on rock stability
    Han, G
    Ioannidis, M
    Dusseault, MB
    [J]. JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 2003, 42 (12): : 46 - 53
  • [43] CONSTRUCTION OF THE NUMERICAL AND SEMI-ANALYTICAL SOLUTIONS OF THE RIGID EARTH ROTATION AT A LONG TIME INTERVALS
    Pashkevich, V. V.
    [J]. ARTIFICIAL SATELLITES-JOURNAL OF PLANETARY GEODESY, 2013, 48 (01): : 25 - 37
  • [44] A semi-analytical model of hydroelastic slamming
    Sun, Zhe
    Korobkin, A.
    Sui, X. P.
    Zong, Zhi
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2021, 101
  • [45] On the semi-analytical framework for Cosserat continuum
    Suvin, V. S.
    Ooi, Ean Tat
    Natarajan, Sundararajan
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 159 : 352 - 363
  • [46] SEMI-ANALYTICAL METHOD OF ORBIT COMPUTATION
    YANG, WL
    [J]. CHINESE ASTRONOMY, 1979, 3 (01): : 24 - 30
  • [47] Monitoring cyanobacteria occurrence in freshwater reservoirs using semi-analytical algorithms and orbital remote sensing
    Borges, Henrique Dantas
    Cicerelli, Rejane Ennes
    de Almeida, Tati
    Roig, Henrique L.
    Olivetti, Diogo
    [J]. MARINE AND FRESHWATER RESEARCH, 2020, 71 (05) : 569 - 578
  • [48] A semi-analytical evaluation of launcher performances
    Di Sotto, E
    Teofilatto, P
    [J]. SPACEFLIGHT MECHANICS 2001, VOL 108, PTS 1 AND 2, 2001, 108 : 953 - 967
  • [49] Refined semi-analytical design sensitivities
    de Boer, H
    van Keulen, F
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (46-47) : 6961 - 6980
  • [50] SEMI-ANALYTICAL CALCULATIONS FOR CIRCULAR QUADRUPOLES
    LEEWHITING, GE
    YAMAZAKI, L
    [J]. NUCLEAR INSTRUMENTS & METHODS, 1971, 94 (02): : 319 - +