Semi-Analytical Estimates for the Orbital Stability of Earth’s Satellites

被引:0
|
作者
Irene De Blasi
Alessandra Celletti
Christos Efthymiopoulos
机构
[1] University of Torino,Department of Mathematics
[2] University of Roma Tor Vergata,Department of Mathematics
[3] University of Padova,Department of Mathematics
来源
关键词
Stability; Normal forms; Orbital lifetime; Satellite dynamics; Space debris; 70F15; 37N05; 34C60;
D O I
暂无
中图分类号
学科分类号
摘要
Normal form stability estimates are a basic tool of Celestial Mechanics for characterizing the long-term stability of the orbits of natural and artificial bodies. Using high-order normal form constructions, we provide three different estimates for the orbital stability of point-mass satellites orbiting around the Earth. (i) We demonstrate the long-term stability of the semimajor axis within the framework of the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document} problem, by a normal form construction eliminating the fast angle in the corresponding Hamiltonian and obtaining HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document}. (ii) We demonstrate the stability of the eccentricity and inclination in a secular Hamiltonian model including lunisolar perturbations (the ‘geolunisolar’ Hamiltonian Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document}), after a suitable reduction of the Hamiltonian to the Laplace plane. (iii) We numerically examine the convexity and steepness properties of the integrable part of the secular Hamiltonian in both the HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document} and Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document} models, which reflect necessary conditions for the holding of Nekhoroshev’s theorem on the exponential stability of the orbits. We find that the HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document} model is non-convex, but satisfies a ‘three-jet’ condition, while the Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document} model restores quasi-convexity by adding lunisolar terms in the Hamiltonian’s integrable part.
引用
收藏
相关论文
共 50 条
  • [31] REMARKS ON SEMI-ANALYTICAL TRIANGULATION
    SCHUT, GH
    PHOTOGRAMMETRIC ENGINEERING, 1970, 36 (01): : 67 - &
  • [32] Runge-Kutta methods for a semi-analytical prediction of milling stability
    Niu, JinBo
    Ding, Ye
    Zhu, LiMin
    Ding, Han
    NONLINEAR DYNAMICS, 2014, 76 (01) : 289 - 304
  • [33] Stability of Taylor-Couette and Dean flow: A semi-analytical study
    Deka, R. K.
    Paul, A.
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (04) : 1627 - 1637
  • [34] Research and Application of Semi-analytical Finite Plate Strip Method in Stability
    Zhang, Jian-hua
    Zhang, Rui-xue
    Xu, Jin-jin
    3RD INTERNATIONAL CONFERENCE ON CIVIL ENGINEERING, ARCHITECTURE AND SUSTAINABLE INFRASTRUCTURE, ICCEASI 2015, 2015, : 952 - 955
  • [35] Semi-analytical models for precipitation
    Hamilton, KG
    ATMOSPHERIC RESEARCH, 1996, 41 (01) : 23 - 45
  • [36] Stability and Oscillation Analysis at Circuit Level and Through Semi-Analytical Formulations
    Suarez, Almudena
    Sancho, Sergio
    Ramirez, Franco
    Ponton, Mabel
    IEEE JOURNAL OF MICROWAVES, 2021, 1 (03): : 763 - 776
  • [37] Semi-analytical attitude propagation of low-altitude Earth orbiting objects
    Cavallari, I.
    Feng, J.
    Vasile, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 142
  • [38] Secular evolution of co-orbital motion of two exoplanets: semi-analytical investigation
    Sidorenko, Vladislav
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2024, 136 (03):
  • [39] Dynamical friction-driven orbital circularization in rotating discs: a semi-analytical description
    Bonetti, Matteo
    Bortolas, Elisa
    Lupi, Alessandro
    Dotti, Massimo
    Raimundo, Sandra, I
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (02) : 3053 - 3059
  • [40] PREDICTING THE ORBITAL LIFETIMES OF EARTH SATELLITES
    KINGHELE, DG
    WALKER, DMC
    ACTA ASTRONAUTICA, 1988, 18 : 123 - 131