Counterexamples to the B-spline Conjecture for Gabor Frames

被引:0
|
作者
Jakob Lemvig
Kamilla Haahr Nielsen
机构
[1] Technical University of Denmark,Department of Applied Mathematics and Computer Science
关键词
B-spline; Frame; Frame set; Gabor system; Zibulski–Zeevi matrix; Primary 42C15; Secondary 42A60;
D O I
暂无
中图分类号
学科分类号
摘要
The frame set conjecture for B-splines Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}, states that the frame set is the maximal set that avoids the known obstructions. We show that any hyperbola of the form ab=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab=r$$\end{document}, where r is a rational number smaller than one and a and b denote the sampling and modulation rates, respectively, has infinitely many pieces, located around b=2,3,⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=2,3,\dots $$\end{document}, not belonging to the frame set of the nth order B-spline. This, in turn, disproves the frame set conjecture for B-splines. On the other hand, we uncover a new region belonging to the frame set for B-splines Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}.
引用
收藏
页码:1440 / 1451
页数:11
相关论文
共 50 条
  • [41] Energy and B-spline interproximation
    Wang, Xuefu
    Cheng, Fuhua
    Barsky, Brian A.
    CAD Computer Aided Design, 1997, 29 (07): : 485 - 496
  • [42] The redefinition of B-spline curve
    Jung, Hyung Bae
    Kim, Kwangsoo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2011, 57 (1-4): : 265 - 270
  • [43] AN EFFICIENT ALGORITHM FOR GENERATING B-SPLINE INTERPOLATION CURVES AND SURFACES FROM B-SPLINE APPROXIMATIONS
    WANG, HP
    HEWGILL, DE
    VICKERS, GW
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1990, 6 (05): : 395 - 400
  • [44] The Unimodality of Initial B-Spline Approximations in Spline Fitting
    Yong, Zhiguo
    Kang, Hongmei
    Yang, Zhouwang
    Gu, Yi
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (02) : 331 - 352
  • [45] Comparing B-spline and Spline models for FO modelling
    Lolive, Damien
    Barbot, Nelly
    Boeffard, Olivier
    TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2006, 4188 : 423 - 430
  • [46] Cubic spline interpolation with quasiminimal B-spline coefficients
    László, L
    ACTA MATHEMATICA HUNGARICA, 2005, 107 (1-2) : 77 - 87
  • [47] Cubic spline interpolation with quasiminimal B-spline coefficients
    Lajos László
    Acta Mathematica Hungarica, 2005, 107 : 77 - 87
  • [48] The Unimodality of Initial B-Spline Approximations in Spline Fitting
    Zhiguo Yong
    Hongmei Kang
    Zhouwang Yang
    Yi Gu
    Communications in Mathematics and Statistics, 2022, 10 : 331 - 352
  • [49] Tight wavelet frames generated by three symmetric B-spline functions with high vanishing moments
    Han, B
    Mo, Q
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 77 - 86
  • [50] Solving Buckmaster Equation Using Cubic B-Spline And Cubic Trigonometric B-Spline Collocation Methods
    Chanthrasuwan, Maveeka
    Asri, Nur Asreenawaty Mohd
    Abd Hamid, Nur Nadiah
    Abd Majid, Ahmad
    Azmi, Amirah
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870