Counterexamples to the B-spline Conjecture for Gabor Frames

被引:0
|
作者
Jakob Lemvig
Kamilla Haahr Nielsen
机构
[1] Technical University of Denmark,Department of Applied Mathematics and Computer Science
来源
Journal of Fourier Analysis and Applications | 2016年 / 22卷
关键词
B-spline; Frame; Frame set; Gabor system; Zibulski–Zeevi matrix; Primary 42C15; Secondary 42A60;
D O I
暂无
中图分类号
学科分类号
摘要
The frame set conjecture for B-splines Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}, states that the frame set is the maximal set that avoids the known obstructions. We show that any hyperbola of the form ab=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab=r$$\end{document}, where r is a rational number smaller than one and a and b denote the sampling and modulation rates, respectively, has infinitely many pieces, located around b=2,3,⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=2,3,\dots $$\end{document}, not belonging to the frame set of the nth order B-spline. This, in turn, disproves the frame set conjecture for B-splines. On the other hand, we uncover a new region belonging to the frame set for B-splines Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}.
引用
收藏
页码:1440 / 1451
页数:11
相关论文
共 50 条
  • [11] Using B-spline frames to represent solutions of acoustics scattering problems
    Kreuzer, Wolfgang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 351 (331-343) : 331 - 343
  • [12] Gabor frames with trigonometric spline dual windows
    Kim, Inrni
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (04)
  • [13] Biangular Gabor frames and Zauner's conjecture
    Magsino, Mark
    Mixon, Dustin G.
    WAVELETS AND SPARSITY XVIII, 2019, 11138
  • [14] ALTERNATE SPLINE - A GENERALIZED B-SPLINE
    BIEN, AP
    CHENG, FH
    JOURNAL OF APPROXIMATION THEORY, 1987, 51 (02) : 138 - 159
  • [15] As-developable-as-possible B-spline surface interpolation to B-spline curves
    Bo, Pengbo
    Zheng, Yujian
    Chu, Dianhui
    Zhang, Caiming
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 79
  • [16] Semi-structured B-spline for blending two B-spline surfaces
    Lin, Hongwei
    Xiong, Yunyang
    Liao, Hongwei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (07) : 706 - 718
  • [17] Approximating uniform rational B-spline curves by polynomial B-spline curves
    Xu Huixia
    Hu Qianqian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 244 : 10 - 18
  • [18] G2 Blending Ball B-Spline Curve by B-Spline
    Zhao, Yuming
    Wu, Zhongke
    Wang, Xingce
    Liu, Xinyue
    PROCEEDINGS OF THE ACM ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, 2023, 6 (01)
  • [19] Construction of B-spline surface from cubic B-spline asymptotic quadrilateral
    Wang, Hui
    Zhu, Chun-Gang
    Li, Cai-Yun
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2017, 11 (04):
  • [20] Interpolation by Nonuniform B-Spline through Uniform B-Spline Filter Banks
    Yang, Yanli
    Ma, De
    Yu, Ting
    2016 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2016, : 375 - 378