Counterexamples to the B-spline Conjecture for Gabor Frames

被引:0
|
作者
Jakob Lemvig
Kamilla Haahr Nielsen
机构
[1] Technical University of Denmark,Department of Applied Mathematics and Computer Science
关键词
B-spline; Frame; Frame set; Gabor system; Zibulski–Zeevi matrix; Primary 42C15; Secondary 42A60;
D O I
暂无
中图分类号
学科分类号
摘要
The frame set conjecture for B-splines Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}, states that the frame set is the maximal set that avoids the known obstructions. We show that any hyperbola of the form ab=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab=r$$\end{document}, where r is a rational number smaller than one and a and b denote the sampling and modulation rates, respectively, has infinitely many pieces, located around b=2,3,⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=2,3,\dots $$\end{document}, not belonging to the frame set of the nth order B-spline. This, in turn, disproves the frame set conjecture for B-splines. On the other hand, we uncover a new region belonging to the frame set for B-splines Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}.
引用
收藏
页码:1440 / 1451
页数:11
相关论文
共 50 条
  • [21] Construction of B-spline surface with B-spline curves as boundary geodesic quadrilateral
    Yang, Huogen
    Wang, Guozhao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 104 - 113
  • [22] Fairing of Parametric Cubic B-spline Curves and Bicubic B-spline Surfaces
    Mu Guowang
    CADDM, 1997, (02) : 11 - 18
  • [23] Patchwork B-spline refinement
    Engleitner, Nora
    Juettler, Bert
    COMPUTER-AIDED DESIGN, 2017, 90 : 168 - 179
  • [24] ON A BIVARIATE B-SPLINE BASIS
    崔锦泰
    王仁宏
    Science China Mathematics, 1984, (11) : 1129 - 1142
  • [25] On the positivity of B-spline Wronskians
    Floater, Michael S.
    CALCOLO, 2024, 61 (03)
  • [26] MULTIRESOLUTION B-SPLINE RADIOSITY
    YU, YZ
    PENG, QS
    COMPUTER GRAPHICS FORUM, 1995, 14 (03) : C285 - &
  • [27] Regularization of B-spline objects
    Xu, Guoliang
    Bajaj, Chandrajit
    COMPUTER AIDED GEOMETRIC DESIGN, 2011, 28 (01) : 38 - 49
  • [28] NUAT B-spline curves
    Wang, GZ
    Chen, QY
    Zhou, MH
    COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (02) : 193 - 205
  • [29] Hierarchical B-spline refinement
    Forsey, David R.
    Bartels, Richard H.
    Computer Graphics (ACM), 1988, 22 (04): : 205 - 212
  • [30] CALCULATING OF B-SPLINE CURVES
    BOHM, W
    COMPUTING, 1977, 18 (02) : 161 - 166