Counterexamples to the B-spline Conjecture for Gabor Frames

被引:0
|
作者
Jakob Lemvig
Kamilla Haahr Nielsen
机构
[1] Technical University of Denmark,Department of Applied Mathematics and Computer Science
关键词
B-spline; Frame; Frame set; Gabor system; Zibulski–Zeevi matrix; Primary 42C15; Secondary 42A60;
D O I
暂无
中图分类号
学科分类号
摘要
The frame set conjecture for B-splines Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}, states that the frame set is the maximal set that avoids the known obstructions. We show that any hyperbola of the form ab=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab=r$$\end{document}, where r is a rational number smaller than one and a and b denote the sampling and modulation rates, respectively, has infinitely many pieces, located around b=2,3,⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=2,3,\dots $$\end{document}, not belonging to the frame set of the nth order B-spline. This, in turn, disproves the frame set conjecture for B-splines. On the other hand, we uncover a new region belonging to the frame set for B-splines Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}.
引用
收藏
页码:1440 / 1451
页数:11
相关论文
共 50 条
  • [1] Counterexamples to the B-spline Conjecture for Gabor Frames
    Lemvig, Jakob
    Nielsen, Kamilla Haahr
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (06) : 1440 - 1451
  • [2] On a necessary condition for B-spline Gabor frames
    Del Prete V.
    Ricerche di Matematica, 2010, 59 (1) : 161 - 164
  • [3] B-Spline Approximations of the Gaussian, their Gabor Frame Properties, and Approximately Dual Frames
    Christensen, Ole
    Kim, Hong Oh
    Kim, Rae Young
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2018, 24 (04) : 1119 - 1140
  • [4] B-Spline Approximations of the Gaussian, their Gabor Frame Properties, and Approximately Dual Frames
    Ole Christensen
    Hong Oh Kim
    Rae Young Kim
    Journal of Fourier Analysis and Applications, 2018, 24 : 1119 - 1140
  • [5] ON THE ASYMPTOTIC CONVERGENCE OF B-SPLINE WAVELETS TO GABOR FUNCTIONS
    UNSER, M
    ALDROUBI, A
    EDEN, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) : 864 - 871
  • [6] Extending Ball B-spline by B-spline
    Liu, Xinyue
    Wang, Xingce
    Wu, Zhongke
    Zhang, Dan
    Liu, Xiangyuan
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 82
  • [7] The Feichtinger conjecture for wavelet frames, gabor frames and frames of translates
    Bownik, Marcin
    Speegle, Darrin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (06): : 1121 - 1143
  • [8] Extended cubic uniform B-spline and α-B-spline
    Institute of Computer Graphics and Image Processing, Department of Mathematics, Zhejiang University, Hangzhou 310027, China
    Zidonghua Xuebao, 2008, 8 (980-983):
  • [9] A quadratic trigonometric B-Spline as an alternate to cubic B-spline
    Samreen, Shamaila
    Sarfraz, Muhammad
    Mohamed, Abullah
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 11433 - 11443
  • [10] alpha B-spline: A linear singular blending B-spline
    Loe, KF
    VISUAL COMPUTER, 1996, 12 (01): : 18 - 25