A Kazhdan-Lusztig Algorithm for Whittaker Modules

被引:0
|
作者
Anna Romanov
机构
[1] University of Sydney,School of Mathematics and Statistics F07
来源
关键词
Whittaker modules; D-modules; Localization of representations; Kazhdan–Lusztig polynomials; 22E47; 14F10;
D O I
暂无
中图分类号
学科分类号
摘要
We study a category of Whittaker modules over a complex semisimple Lie algebra by realizing it as a category of twisted D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {D}$\end{document}-modules on the associated flag variety using Beilinson–Bernstein localization. The main result of this paper is the development of a geometric algorithm for computing the composition multiplicities of standard Whittaker modules. This algorithm establishes that these multiplicities are determined by a collection of polynomials we refer to as Whittaker Kazhdan–Lusztig polynomials. In the case of trivial nilpotent character, this algorithm specializes to the usual algorithm for computing multiplicities of composition factors of Verma modules using Kazhdan–Lusztig polynomials.
引用
收藏
页码:81 / 133
页数:52
相关论文
共 50 条
  • [41] A projection property for Kazhdan-Lusztig bases
    Green, RM
    Losonczy, J
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (01) : 23 - 34
  • [42] SIGN TYPES AND KAZHDAN-LUSZTIG CELLS
    DU, J
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1991, 12 (01) : 33 - 39
  • [43] RSK BASES AND KAZHDAN-LUSZTIG CELLS
    Raghavan, K. N.
    Samuel, Preena
    Subrahmanyam, K. V.
    ANNALES DE L INSTITUT FOURIER, 2012, 62 (02) : 525 - 569
  • [44] The Kazhdan-Lusztig polynomials of uniform matroids
    Gao, Alice L. L.
    Lu, Linyuan
    Xie, Matthew H. Y.
    Yang, Arthur L. B.
    Zhang, Philip B.
    ADVANCES IN APPLIED MATHEMATICS, 2021, 122
  • [45] On the combinatorial invariance of Kazhdan-Lusztig polynomials
    Incitti, Federico
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1332 - 1350
  • [46] A GROBNER BASIS FOR KAZHDAN-LUSZTIG IDEALS
    Woo, Alexander
    Yong, Alexander
    AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (04) : 1089 - 1137
  • [47] Induction and restriction of Kazhdan-Lusztig cells
    Roichman, Y
    ADVANCES IN MATHEMATICS, 1998, 134 (02) : 384 - 398
  • [48] On Kazhdan-Lusztig cells in type B
    Cédric Bonnafé
    Journal of Algebraic Combinatorics, 2010, 31 : 53 - 82
  • [49] Factorization of Kazhdan-Lusztig elements for Grassmanians
    Kirillov, A
    Lascoux, A
    COMBINATORIAL METHODS IN REPRESENTATION THEORY, 2000, 28 : 143 - 154
  • [50] Super duality and Kazhdan-Lusztig polynomials
    Cheng, Shun-Jen
    Wang, Weiqiang
    Zhang, R. B.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (11) : 5883 - 5924