Whittaker modules;
D-modules;
Localization of representations;
Kazhdan–Lusztig polynomials;
22E47;
14F10;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study a category of Whittaker modules over a complex semisimple Lie algebra by realizing it as a category of twisted D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal {D}$\end{document}-modules on the associated flag variety using Beilinson–Bernstein localization. The main result of this paper is the development of a geometric algorithm for computing the composition multiplicities of standard Whittaker modules. This algorithm establishes that these multiplicities are determined by a collection of polynomials we refer to as Whittaker Kazhdan–Lusztig polynomials. In the case of trivial nilpotent character, this algorithm specializes to the usual algorithm for computing multiplicities of composition factors of Verma modules using Kazhdan–Lusztig polynomials.
机构:
Univ Franche Comte, Labo Math Besancon, CNRS, UMR 6623, F-25030 Besancon, FranceUniv Franche Comte, Labo Math Besancon, CNRS, UMR 6623, F-25030 Besancon, France