A Kazhdan-Lusztig Algorithm for Whittaker Modules

被引:0
|
作者
Anna Romanov
机构
[1] University of Sydney,School of Mathematics and Statistics F07
来源
关键词
Whittaker modules; D-modules; Localization of representations; Kazhdan–Lusztig polynomials; 22E47; 14F10;
D O I
暂无
中图分类号
学科分类号
摘要
We study a category of Whittaker modules over a complex semisimple Lie algebra by realizing it as a category of twisted D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {D}$\end{document}-modules on the associated flag variety using Beilinson–Bernstein localization. The main result of this paper is the development of a geometric algorithm for computing the composition multiplicities of standard Whittaker modules. This algorithm establishes that these multiplicities are determined by a collection of polynomials we refer to as Whittaker Kazhdan–Lusztig polynomials. In the case of trivial nilpotent character, this algorithm specializes to the usual algorithm for computing multiplicities of composition factors of Verma modules using Kazhdan–Lusztig polynomials.
引用
收藏
页码:81 / 133
页数:52
相关论文
共 50 条