Skew-commuting and commuting mappings in rings

被引:1
|
作者
Park K.-H. [1 ]
Jung Y.-S. [2 ]
机构
[1] Department of Mathematics Education, Seowon University, Chongju
[2] Department of Mathematics, Chungnam National University
关键词
Commuting maps; Derivation; Skew-commuting maps;
D O I
10.1007/s00010-002-8037-1
中图分类号
学科分类号
摘要
We study some maps which are skew-commuting or skew-centralizing on additive subgroups of rings with a left identity; and we present some results concerning commuting mappings in semiprime rings. The first main part: Let n denote an arbitrary positive integer. Let R be a ring with left identity e, and let H be an additive subgroup of R containing e. Let G : R × R → R be a symmetric bi-additive mapping and let g be the trace of G. Let R be n!-torsion-free if n > 1, and 2-torsion-free if n = 1. If g is re-skew-commuting on H, then g(H) = {0}. The second main part: Let re ≥ 2. If R is an n!-torsion-free semiprime ring, and d : R → R is a derivation such that d2 is re-commuting on R, then d maps R into its center. © Birkhäuser Verlag, 2002.
引用
收藏
页码:136 / 144
页数:8
相关论文
共 50 条
  • [41] ON COMMUTING MAPPINGS BY SUCCESSIVE APPROXIMATIONS
    CANO, J
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04): : 393 - &
  • [42] On commuting graphs of semisimple rings
    Akbari, S
    Ghandehari, A
    Hadian, M
    Mohammadian, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 390 : 345 - 355
  • [43] Commuting maps on alternative rings
    Bruno Leonardo Macedo Ferreira
    Ivan Kaygorodov
    Ricerche di Matematica, 2022, 71 : 67 - 78
  • [44] A NOTE ON COMMUTING AUTOMORPHISMS OF RINGS
    LUH, J
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (01): : 61 - &
  • [45] The commuting graphs of finite rings
    Dolzan, David
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 95 (1-2): : 123 - 131
  • [46] On commuting probability of finite rings
    Dutta, Jutirekha
    Basnet, Dhiren Kumar
    Nath, Rajat Kanti
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (02): : 372 - 382
  • [47] Commuting maps on alternative rings
    Ferreira, Bruno Leonardo Macedo
    Kaygorodov, Ivan
    RICERCHE DI MATEMATICA, 2022, 71 (01) : 67 - 78
  • [48] Annihilating and power-commuting generalized skew derivations on lie ideals in prime rings
    De Filippis, Vincenzo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (02) : 481 - 492
  • [49] Annihilating and power-commuting generalized skew derivations on lie ideals in prime rings
    Vincenzo De Filippis
    Czechoslovak Mathematical Journal, 2016, 66 : 481 - 492
  • [50] Commuting Mappings on the Hochschild Extension of an Algebra
    L. Chen
    J. Cai
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 749 - 762