Skew-commuting and commuting mappings in rings

被引:1
|
作者
Park K.-H. [1 ]
Jung Y.-S. [2 ]
机构
[1] Department of Mathematics Education, Seowon University, Chongju
[2] Department of Mathematics, Chungnam National University
关键词
Commuting maps; Derivation; Skew-commuting maps;
D O I
10.1007/s00010-002-8037-1
中图分类号
学科分类号
摘要
We study some maps which are skew-commuting or skew-centralizing on additive subgroups of rings with a left identity; and we present some results concerning commuting mappings in semiprime rings. The first main part: Let n denote an arbitrary positive integer. Let R be a ring with left identity e, and let H be an additive subgroup of R containing e. Let G : R × R → R be a symmetric bi-additive mapping and let g be the trace of G. Let R be n!-torsion-free if n > 1, and 2-torsion-free if n = 1. If g is re-skew-commuting on H, then g(H) = {0}. The second main part: Let re ≥ 2. If R is an n!-torsion-free semiprime ring, and d : R → R is a derivation such that d2 is re-commuting on R, then d maps R into its center. © Birkhäuser Verlag, 2002.
引用
收藏
页码:136 / 144
页数:8
相关论文
共 50 条
  • [21] LIE IDEALS AND COMMUTING MAPPINGS IN PRIME-RINGS
    AWTAR, R
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 43 (1-2): : 169 - 180
  • [22] A Note on Relatively Commuting Mappings of Prime and Semiprime Rings
    Mahmood, Auday Hekmat
    Salman, Maysaa Zaki
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2023, 18 (02): : 153 - 162
  • [23] On n-commuting and n-skew-commuting maps with generalized derivations in prime and semiprime rings
    ur Rehman N.
    de Filippis V.
    Siberian Mathematical Journal, 2011, 52 (3) : 516 - 523
  • [24] ON n-COMMUTING AND n-SKEW-COMMUTING MAPS WITH GENERALIZED DERIVATIONS IN PRIME AND SEMIPRIME RINGS
    Rehman, N. Ur
    De Filippis, V.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (03) : 516 - 523
  • [25] Power-Commuting Generalized Skew Derivations in Prime Rings
    Luisa Carini
    Vincenzo De Filippis
    Giovanni Scudo
    Mediterranean Journal of Mathematics, 2016, 13 : 53 - 64
  • [26] Generalized skew derivations and generalization of commuting maps on prime rings
    Vincenzo De Filippis
    Basudeb Dhara
    Nripendu Bera
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 599 - 620
  • [27] Generalized skew derivations and generalization of commuting maps on prime rings
    De Filippis, Vincenzo
    Dhara, Basudeb
    Bera, Nripendu
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, 63 (03): : 599 - 620
  • [28] Power-Commuting Generalized Skew Derivations in Prime Rings
    Carini, Luisa
    De Filippis, Vincenzo
    Scudo, Giovanni
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 53 - 64
  • [29] N-commuting mappings on (semi)-prime rings with applications
    Ali, Shakir
    Ashraf, Mohammad
    Raza, Mohd Arif
    Khan, Abdul Nadim
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) : 2262 - 2270
  • [30] NONADDITIVE COMMUTING MAPPINGS ON TRIANGULAR n-MATRIX RINGS
    Liu, Lei
    Chen, Zhixuan
    OPERATORS AND MATRICES, 2023, 17 (04): : 939 - 952