Annihilating and power-commuting generalized skew derivations on lie ideals in prime rings

被引:0
|
作者
Vincenzo De Filippis
机构
[1] University of Messina,Department of Mathematics and Computer Science
来源
关键词
generalized skew derivation; Lie ideal; prime ring; 16W25; 16N60;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a prime ring of characteristic different from 2 and 3, Qr its right Martindale quotient ring, C its extended centroid, L a non-central Lie ideal of R and n ≥ 1 a fixed positive integer. Let α be an automorphism of the ring R. An additive map D: R → R is called an α-derivation (or a skew derivation) on R if D(xy) = D(x)y + α(x)D(y) for all x, y ∈ R. An additive mapping F: R → R is called a generalized α-derivation (or a generalized skew derivation) on R if there exists a skew derivation D on R such that F(xy) = F(x)y + α(x)D(y) for all x, y ∈ R.
引用
收藏
页码:481 / 492
页数:11
相关论文
共 50 条
  • [1] Annihilating and power-commuting generalized skew derivations on lie ideals in prime rings
    De Filippis, Vincenzo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (02) : 481 - 492
  • [2] Power-Commuting Generalized Skew Derivations in Prime Rings
    Luisa Carini
    Vincenzo De Filippis
    Giovanni Scudo
    Mediterranean Journal of Mathematics, 2016, 13 : 53 - 64
  • [3] Power-Commuting Generalized Skew Derivations in Prime Rings
    Carini, Luisa
    De Filippis, Vincenzo
    Scudo, Giovanni
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 53 - 64
  • [4] Power-commuting skew derivations on Lie ideals
    De Filippis, Vincenzo
    Huang, Shuliang
    MONATSHEFTE FUR MATHEMATIK, 2015, 177 (03): : 363 - 372
  • [5] Power-commuting skew derivations on Lie ideals
    Vincenzo De Filippis
    Shuliang Huang
    Monatshefte für Mathematik, 2015, 177 : 363 - 372
  • [6] Generalized Derivations Commuting on Lie Ideals in Prime Rings
    Dhara B.
    Kar S.
    Kuila S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (1) : 159 - 181
  • [7] Generalized skew derivations on Lie ideals in prime rings
    Shahoor Khan
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 219 - 225
  • [8] Generalized skew derivations on Lie ideals in prime rings
    Khan, Shahoor
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (01) : 219 - 225
  • [9] Generalized skew derivations on Lie ideals in prime rings
    Giovanni Scudo
    Ashutosh Pandey
    Balchand Prajapati
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (2)
  • [10] Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
    De Filippis, V.
    Rania, F.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 748 - 758