Power-commuting skew derivations on Lie ideals

被引:0
|
作者
Vincenzo De Filippis
Shuliang Huang
机构
[1] University of Messina,Department of Mathematics and Computer Science
[2] Chuzhou University,Department of Mathematics
来源
关键词
Skew derivation; Automorphism; Generalized polynomial identities; Lie ideal; 16N20; 16W25; 16N55;
D O I
暂无
中图分类号
学科分类号
摘要
Let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} be a prime ring of characteristic different from 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} and 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}, L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} a non-central Lie ideal of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, (d,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d,\sigma )$$\end{document} a nonzero skew derivation of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} a fixed positive integer. If [d(x),x]n=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[d(x),x]^{n}=0$$\end{document} for all x∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in L$$\end{document}, then R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} satisfies s4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{4}$$\end{document}.
引用
收藏
页码:363 / 372
页数:9
相关论文
共 50 条
  • [1] Power-commuting skew derivations on Lie ideals
    De Filippis, Vincenzo
    Huang, Shuliang
    MONATSHEFTE FUR MATHEMATIK, 2015, 177 (03): : 363 - 372
  • [2] Annihilating and power-commuting generalized skew derivations on lie ideals in prime rings
    Vincenzo De Filippis
    Czechoslovak Mathematical Journal, 2016, 66 : 481 - 492
  • [3] Annihilating and power-commuting generalized skew derivations on lie ideals in prime rings
    De Filippis, Vincenzo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (02) : 481 - 492
  • [4] Power-Commuting Generalized Skew Derivations in Prime Rings
    Luisa Carini
    Vincenzo De Filippis
    Giovanni Scudo
    Mediterranean Journal of Mathematics, 2016, 13 : 53 - 64
  • [5] Power-Commuting Generalized Skew Derivations in Prime Rings
    Carini, Luisa
    De Filippis, Vincenzo
    Scudo, Giovanni
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 53 - 64
  • [6] GENERALIZED SKEW DERIVATIONS ON LIE IDEALS
    De Filippis, Vincenzo
    Demir, Cagri
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2015, 10 (01): : 113 - 129
  • [7] An Identity with Skew Derivations on Lie Ideals
    WANG ZHENG-PING
    REHMAN UR NADEEM
    HUANG SHU-LIANG
    CommunicationsinMathematicalResearch, 2016, 32 (01) : 83 - 87
  • [8] GENERALIZED SKEW DERIVATIONS WITH POWER CENTRAL VALUES ON LIE IDEALS
    Chang, Jui-Chi
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) : 2241 - 2248
  • [9] Annihilators and Power Values of Generalized Skew Derivations on Lie Ideals
    De Filippis, Vincenzo
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (02): : 258 - 270
  • [10] Power values of quadratic polynomials with generalized skew derivations on Lie ideals
    Ali, Asma
    De Filippis, Vincenzo
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2021, 62 (04): : 893 - 905