Power-commuting skew derivations on Lie ideals

被引:0
|
作者
Vincenzo De Filippis
Shuliang Huang
机构
[1] University of Messina,Department of Mathematics and Computer Science
[2] Chuzhou University,Department of Mathematics
来源
关键词
Skew derivation; Automorphism; Generalized polynomial identities; Lie ideal; 16N20; 16W25; 16N55;
D O I
暂无
中图分类号
学科分类号
摘要
Let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} be a prime ring of characteristic different from 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} and 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}, L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} a non-central Lie ideal of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, (d,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d,\sigma )$$\end{document} a nonzero skew derivation of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} a fixed positive integer. If [d(x),x]n=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[d(x),x]^{n}=0$$\end{document} for all x∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in L$$\end{document}, then R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} satisfies s4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{4}$$\end{document}.
引用
收藏
页码:363 / 372
页数:9
相关论文
共 50 条
  • [21] A note on generalized skew derivations on Lie ideals
    Ashraf, Mohammad
    De Filippis, Vincenzo
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):
  • [22] Generalized Derivations Commuting on Lie Ideals in Prime Rings
    Dhara B.
    Kar S.
    Kuila S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (1) : 159 - 181
  • [23] Annihilators of power values of generalized skew derivations on Lie ideals in prime rings
    C. Garg
    B. Dhara
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (1)
  • [24] Power central valued b-generalized skew derivations on Lie ideals
    Rania, Francesco
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (04) : 1385 - 1393
  • [25] Power values of generalized skew derivations preserving Jordan product on Lie ideals
    Rania, Francesco
    Scudo, Giovanni
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (06) : 2336 - 2348
  • [26] Generalized Derivations with Skew Nilpotent Values on Lie Ideals
    徐晓伟
    马晶
    牛凤文
    Northeastern Mathematical Journal, 2006, (02) : 241 - 252
  • [27] Generalized Skew Derivations with Hypercommuting Conditions on Lie Ideals
    Carini, Luisa
    De Filippis, Vincenzo
    Scudo, Giovanni
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (06): : 1053 - 1073
  • [28] Generalized Skew Derivations and Nilpotent Values on Lie Ideals
    De Filippis, Vincenzo
    Di Vincenzo, Onofrio Mario
    ALGEBRA COLLOQUIUM, 2019, 26 (04) : 589 - 614
  • [29] b-Generalized Skew Derivations on Lie Ideals
    Vincenzo De Filippis
    Feng Wei
    Mediterranean Journal of Mathematics, 2018, 15
  • [30] ANNIHILATORS OF SKEW DERIVATIONS WITH ENGEL CONDITIONS ON LIE IDEALS
    Chou, Ming-Chu
    Liu, Cheng-Kai
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) : 898 - 911