A Gauss–Jacobi Kernel Compression Scheme for Fractional Differential Equations

被引:0
|
作者
Daniel Baffet
机构
[1] University of Basel,Department of Mathematics and Computer Science
来源
关键词
Fractional differential equations; Volterra equations; Gaussian quadratures; Kernel compression; Local schemes;
D O I
暂无
中图分类号
学科分类号
摘要
A scheme for approximating the kernel w of the fractional α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-integral by a linear combination of exponentials is proposed and studied. The scheme is based on the application of a composite Gauss–Jacobi quadrature rule to an integral representation of w. This results in an approximation of w in an interval [δ,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\delta ,T]$$\end{document}, with 0<δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\delta $$\end{document}, which converges rapidly in the number J of quadrature nodes associated with each interval of the composite rule. Using error analysis for Gauss–Jacobi quadratures for analytic functions, an estimate of the relative pointwise error is obtained. The estimate shows that the number of terms required for the approximation to satisfy a prescribed error tolerance is bounded for all α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, and that J is bounded for α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0$$\end{document}, and δ∈(0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in (0,T)$$\end{document}.
引用
收藏
页码:227 / 248
页数:21
相关论文
共 50 条
  • [1] A Gauss-Jacobi Kernel Compression Scheme for Fractional Differential Equations
    Baffet, Daniel
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 227 - 248
  • [2] A KERNEL COMPRESSION SCHEME FOR FRACTIONAL DIFFERENTIAL EQUATIONS
    Baffet, Daniel
    Hesthaven, Jan S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) : 496 - 520
  • [3] A Shifted Jacobi-Gauss Collocation Scheme for Solving Fractional Neutral Functional-Differential Equations
    Bhrawy, A. H.
    Alghamdi, M. A.
    ADVANCES IN MATHEMATICAL PHYSICS, 2014, 2014
  • [4] Lucas Wavelet Scheme for Fractional Bagley–Torvik Equations: Gauss–Jacobi Approach
    Koundal R.
    Kumar R.
    Srivastava K.
    Baleanu D.
    International Journal of Applied and Computational Mathematics, 2022, 8 (1)
  • [5] Explicit solutions of Jacobi and Gauss differential equations by means of operators of fractional calculus
    Wang, Pin-Yu
    Lin, Shy-Der
    Srivastava, H. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (02) : 760 - 769
  • [6] On the convergence of Jacobi-Gauss collocation method for linear fractional delay differential equations
    Peykrayegan, N.
    Ghovatmand, M.
    Noori Skandari, M. H.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 2237 - 2253
  • [7] Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 342 - 359
  • [8] A Jacobi Gauss–Lobatto and Gauss–Radau collocation algorithm for solving fractional Fokker–Planck equations
    Ramy M. Hafez
    Samer S. Ezz-Eldien
    Ali H. Bhrawy
    Engy A. Ahmed
    Dumitru Baleanu
    Nonlinear Dynamics, 2015, 82 : 1431 - 1440
  • [9] An efficient numerical scheme in reproducing kernel space for space fractional partial differential equations
    Liu, Boyu
    Wang, Wenyan
    AIMS MATHEMATICS, 2024, 9 (11): : 33286 - 33300
  • [10] GENERALIZED JACOBI FUNCTIONS AND THEIR APPLICATIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS
    Chen, Sheng
    Shen, Jie
    Wang, Li-Lian
    MATHEMATICS OF COMPUTATION, 2016, 85 (300) : 1603 - 1638