Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations

被引:47
|
作者
Doha, E. H. [1 ]
Abdelkawy, M. A. [2 ,3 ]
Amin, A. Z. M. [3 ]
Lopes, Antonio M. [4 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia
[3] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[4] Univ Porto, Fac Engn, UISPA LAETA INEGI, Porto, Portugal
关键词
Fractional integro-differential equation; Spectral collocation method; Jacobi-Gauss quadrature; Riemann-Liouville derivative; NUMERICAL-SOLUTION; DIFFUSION EQUATION; ORDER; TRANSPORT; MATRIX;
D O I
10.1016/j.cnsns.2019.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new shifted Jacobi-Gauss-collocation (SJ-G-C) algorithm is presented for solving numerically several classes of fractional integro-differential equations (FI-DEs), namely Volterra, Fredholm and systems of Volterra FI-DEs, subject to initial and nonlocal boundary conditions. The new SJ-G-C method is also extended for calculating the solution of mixed Volterra-Fredholm FI-DEs. The shifted Jacobi-Gauss points are adopted for collocation nodes and the FI-DEs are reduced to systems of algebraic equations. Error analysis is performed and several numerical examples are given for illustrating the advantages of the new algorithm. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 359
页数:18
相关论文
共 50 条
  • [1] Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations
    Doha, Eid H.
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Baleanu, Dumitru
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (03): : 332 - 352
  • [2] CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 673 - 690
  • [3] CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    杨银
    陈艳萍
    黄云清
    [J]. Acta Mathematica Scientia, 2014, 34 (03) : 673 - 690
  • [4] Collocation method with convergence for generalized fractional integro-differential equations
    Sharma, Shiva
    Pandey, Rajesh K.
    Kumar, Kamlesh
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 342 : 419 - 430
  • [5] A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations
    Qingqing Wu
    Zhongshu Wu
    Xiaoyan Zeng
    [J]. Communications on Applied Mathematics and Computation, 2021, 3 : 509 - 526
  • [6] A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations
    Wu, Qingqing
    Wu, Zhongshu
    Zeng, Xiaoyan
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (03) : 509 - 526
  • [7] Spline Collocation for Fractional Integro-Differential Equations
    Pedas, Arvet
    Tamme, Enn
    Vikerpuur, Mikk
    [J]. Finite Difference Methods, Theory and Applications, 2015, 9045 : 315 - 322
  • [8] Shifted fractional Legendre spectral collocation technique for solving fractional stochastic Volterra integro-differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 2) : 1363 - 1373
  • [9] On the convergence of Jacobi-Gauss collocation method for linear fractional delay differential equations
    Peykrayegan, N.
    Ghovatmand, M.
    Noori Skandari, M. H.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 2237 - 2253
  • [10] Shifted fractional Legendre spectral collocation technique for solving fractional stochastic Volterra integro-differential equations
    E. H. Doha
    M. A. Abdelkawy
    A. Z. M. Amin
    António M. Lopes
    [J]. Engineering with Computers, 2022, 38 : 1363 - 1373